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Abstract

The α–Floodlight Problem consists of finding optimal coverings of polygons with flood-
lights with a fixed visibility angle α. In this thesis, we introduce a variant of the floodlight
problem, the Angular Art Gallery Problem (AAGP). The visibility angle of each floodlight
may be set individually between 0 and 2π. The objective is not to minimize the number
of floodlights, but the total visibility angle of all floodlights.

After an introduction to the AAGP, we present various bounds for different kinds of
polygons. This includes an optimal covering of equilateral triangles, a tight upper bound
of (n− 1)π6 for histograms and a general upper bound of (n− 2)π4 for simple polygons, if
n is the number of vertices. Furthermore, we explore some other aspects of the AAGP,
including a possible approach to further improve the general upper bound.

Zusammenfassung

Das α–Floodlight Problem beschäftigt sich mit der optimalen Abdeckung von Polygons
mit Flutlichtern, die einen festen Öffnungswinkel α besitzen. In dieser Arbeit führen wir
das Angular Art Gallery Problem (AAGP) als Variante des Flutlichtproblems ein. Hierbei
ist der Öffnungswinkel nicht auf ein bestimmten Winkel α festgelegt, sondern kann für
jedes Flutlicht individuell zwischen gewählt werden. Im Gegensatz zum α–Floodlight
Problem ist hier das Ziel keine Minimierung der benötigten Flutlichter, sondern eine
Minimierung des in der Summer aller Flutlichter benötigen Winkels.

Nach einer kurzen Einführung in das Problem zeigen wir Schranken für verschiedene
Arten von Polygonen. Wir beweisen, dass gleichseitige Dreiecke mit keinem Gesamtwinkel
kleiner als π

3 abgedeckt werden können. Wir leiten eine scharfe obere Schranke von
(n− 1)π6 für Histogramme her und beweisen eine allgemeine obere Schranke von (n− 2)π6
für einfache Polygone. Außerdem betrachten wir einige andere Aspekte des AAGP, unter
anderem präsentieren wir einen Ansatz, wie die allgemeine obere Schranke möglicherweise
verbessert werden kann.





Aufgabenstellung

Eines der klassischen Probleme der algorithmischen Geometrie ist das sogenannte Art-
Gallery-Problem (AGP). Hierbei geht es darum, einen gegebenen Grundriss mit einer
möglichst geringen Anzahl von Kameras mit Rundumsicht flächendeckend zu überwachen.
Das Flutlichtproblem ist eine Variante des AGP, bei der Kameras mit eingeschränktem
Öffnungswinkel zu positionieren sind.

Herr Lieder soll sich im Rahmen dieser Abschlussarbeit mit neuen Varianten des
Flutlichtproblems beschäftigen. Dazu gehört die Variante mit variablen Öffnungswinkeln
und Ausrichtungen.
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1 Introduction

A set of well studied problems in computational geometry deals with the covering of
polygons. All of these problems have their origin in the Art Gallery Problem (AGP),
initially introduced by Victor Klee in 1973: Given a two-dimensional art gallery, how
many watchmen are necessary to guard the art gallery completely. Translated into a
mathematical model, the AGP asks for a minimum set C of points (guards) within a
given polygon P, such that every point p ∈ P is visible by at least one guard, i.e., for
every point p ∈ P exists a g ∈ C such that the line segment gp is contained in P.

A derivative problem concerns only guards with a limited visibility angle. While the
guards in the AGP have an all around view, the guards in the α–Floodlight Problem,
called floodlights, have a visibility angle, restricted to 0 < α ≤ 2π.

In this thesis, we examine a variant of the α–Floodlight Problem. Instead of assigning
a global visibility angle, it may be set individually for every floodlight. The objective is
to find a set of floodlights, such that every point within a given polygon is visible by at
least one floodlight and the sum of all floodlights angles is minimized. This problem is
called the Angular Art Gallery Problem (AAGP).

To introduce the problem, we give a short example: Given a rectangle R with a height
of 1 and a width of ` > 1, what is the minimal total visibility angle, required to cover
R as an instance of the AAGP? Naively, one would suspect that one floodlight with an
angle of π

2 , placed in one corner of the rectangle, is required. However, this angle may be
reduced by placing two floodlights in opposite corners of R, covering one half each (see
Figure 1.1). This solution provides an overall angle smaller than π

2 . But is this already
the smallest angle, sufficient to cover R completely? The question remains open to this
point, but gives a good impression of the non-trivially of this problem, even for very
simply structured polygons.

1

`

Figure 1.1. By intuition, an angle of π
2 is required to cover a rectangle floodlights, but this

angle may be reduced by using two floodlights in opposite corners.

In this thesis, some results on upper and lower bounds for different polygon structures
are presented. After a formal definition of the problem, a worst case optimal upper bound
of (n− 1)π6 , sufficient to cover any given histogram polygon with n vertices, is proven in
Chapter 2. Moreover, the proof provides a polynomial algorithm to find such an upper
bound covering. In Chapter 3, we prove that a minimum total angle of π

3 is required to
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cover an equilateral triangle. The third main result is an efficient algorithm, providing a
covering of any simple polygon with n vertices with a total angle of at most (n− 2)π4 .
To summarize, we present the following results.

Table 1.1. Overview of the results of this thesis, the main results are framed.

Description Lower Bound Upper Bound Remark

Equilateral triangles π
3

π
3

Histograms (n− 1)π3 − ε, ε > 0 (n− 1)π3 Uses the lower bound for
equilateral triangles

Simple polygons (n− 1)π3 − ε, ε > 0 (n− 2)π4 Generalization of histo-
grams

1.1. Related Work
Art Gallery Problem As previously mentioned, the family of art gallery problems covers
a wide range of well studied problems. After the AGP was posed in 1973, a first result
was presented in 1975 by Vasek Chvátal in the form of “Chvátal’s Art Gallery Theorem”:⌊
n
3
⌋

vertex guards are always sufficient and sometimes necessary to cover a given simple
polygon with n vertices [6]. Instead of partitioning a given polygon in certain substructures
as Chvátal did, Steve Fisk gave a much shorter proof of the same bound in 1978, arguing
over a triangulation of the polygon and its dual graph [16]. Additionally, a tight upper
bound of

⌊
n
4
⌋

for orthogonal polygons [22, 25], i.e. polygons with all internal angles either
π
2 or 3π

2 , and an upper bound for polygons with holes of
⌊
n+2h

3

⌋
, where h is the number of

holes, has been obtained [26, pp.126–127]. Another variant is the Chromatic Art Gallery
Problem (CAGP), introduced in 2010 by Erickson and LaValle [12]. Here, each guard in
a guard cover is assigned a color. The CAGP asks for the minimum number of colors,
required to cover a given polygon, such that no two guards with overlapping visibility
polygons are assigned the same color. For CAGP, various bounds and complexity results
were presented [12, 13, 15]. The NP–hardness of the fundamental AGP was proven by
Lee and Lin in 1986 [23], as well as the orthogonal Art Gallery Problem [8]. It was not
clear for a long time, if the AGP is in NP. In 2017, Abrahamsen et al. [1] showed that
the AGP is ∃R–complete, where NP ⊆ ∃R ⊆ PSPACE.

α–Floodlight Problem Some results regarding the α–Floodlight Problem refer to the
covering of polygons with a limited number of floodlights. In [14], an O

(
n2) time

algorithm is presented to determine a set of two floodlights, covering a convex polygon
with n vertices, such that the sum of their angles is minimized. In [28, pp. 981–982], it is
proven that any convex polygon can be covered by three vertex floodlights with given
angles α1 + α2 + α3 = π. A similar result is given in [20]: Any convex polygon with
n ≥ 4 vertices can be covered by four π

4 –floodlights. This is not generally true: Given a
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polygon with n vertices and k ≤ n α–floodlights with α = π
k , the floodlights cannot be

assigned to distinct vertices and cover the polygon completely in general [27], except the
polygon is circular [17], i.e. all vertices lie on a circle. Another similar result is proven in
[7]: Three π

6 – and three π
4 –floodlights are sufficient to cover any triangle and any convex

quadrangle, respectively. Moreover, the α–Floodlight Problem is shown to be NP–hard
for any 0 < α ≤ 2π by Bagga [3].

Other related problems The Stage Illumination Problem is defined as follows: Given a
line segment (stage) L on the x axis and k floodlights with visibility angles α1, . . . ,αk,
placed anywhere in the plane above the x axis, is there a rotation of the floodlights, such
that L is completely covered. This problem is proven to be NP–hard [21]. A variant of
this problem takes L and a set of points P as instance and asks for a minimum floodlight
covering with floodlights, placed on points in P only. In this context, minimum means
a minimum total floodlight angle. For this variant, an O(n logn) time algorithm was
presented by Czyzowicz et al. [9].

Another related problem is the (Altitude) Terrain Guarding Problem ((A)TGP). Given
an x-monotone polygonal chain (terrain), find a minimum set of guards, placed on
the vertices of the terrain, such that the whole terrain is covered. The TGP is shown
to be NP–hard, but there are various approximation algorithms known, including a
4-approximation [10] and a polynomial-time approximation scheme [19]. The ATGP asks
not for a guard set with guards placed on the vertices of the terrain, but an optimal
covering with guards, placed on an altitude line. This structure has strong similarities to
the histograms, considered in this thesis. For the ATGP, a polynomial time algorithm is
known, solving it optimal [18].

A completely different concept of floodlights is used in a distantly related problem,
which coincidentally is also referred to the Floodlight Problem [4]: Given three angles
α1 + α2 + α3 = 2π, n points in the plane and three integral numbers k1 + k2 + k3 = n,
there is always a tripartition of the plane into three wedges, such that the i-th wedge
has an angle of αi and contains ki points. Such a tripartition can be determined in
O (n logn).

1.2. Problem Definition
Initially, we give some preliminaries to the Art Gallery Problem. Given a polygon P,
a guard g is defined as a point within P and it sees another point p ∈ P, if and only if
the line segment gp is contained in P. We also refer to p as being visible from g. We
distinguish between two kinds of guards: While point guards may be located on any point
within P , vertex guards are restricted to being placed on the vertices of P . The visibility
polygon of g consists of all points that are visible by g. A point p ∈ P is covered, if and
only if it is visible by at least one guard. P is covered, if and only if every point p ∈ P is
covered.

In contrast to the AGP, we consider floodlights instead of guards in the Angular Art
Gallery Problem. A floodlight is, like a guard, placed on a point within the polygon. In
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addition, it is defined by two angles φ1 and φ2, which define the visibility cone of the
floodlight and restrict the visibility polygon.

0

π
6

2π
6

π
24π

6
5π
6

π

7π
6

8π
6 3π

2

10π
6

11π
6

φ1

φ2

(a) The floodlight is defined by
(
p, 23π

12 , π4
)
,

where the angles are understood in the polar
coordinate system, centered by p.

f

(b) The red area is the visibility polygon of the
floodlight f .

Figure 1.2. Exemplary guard definition and visibility

Definition 1 (Floodlight). A floodlight is a tuple f = (p,φ1,φ2), where p ∈ P is a point
within a given polygon P and the angles 0 ≤ φ1,φ2 < 2π define the visibility cone of
f . The angles are understood as polar angles in the domain [0, 2π] with p as pole. The
cone is spanned counterclockwise from φ1 to φ2 (see Figure 1.2a). The angle of f is
]f = (φ2 − φ1) mod 2π.

Definition 2 (Visibility). Consider a floodlight f = (p,φ1,φ2) within a polygon P.
It covers a point q ∈ P, if and only if the line segment pq is completely within both,
P and the visibility cone of f . The visibility polygon of f is the polygon defined by
{q ∈ P | q is covered by f} (see Figure 1.2b).

Definition 3 (Covering). Given a simple polygon P, a covering C is a set of floodlights
within P. C is feasible, if and only if it covers P completely, i.e., every point p ∈ P is
covered by at least one floodlight f ∈ C.

Definition 4 (Total floodlight angle). Given a covering C, the total floodlight angle is
lifted from the individual floodlight angles as

]C =
∑
f∈C

]f .

The objective in the AAGP is not to minimize the number of floodlights, but to
minimize the total floodlight angle. Formally, it may be defined as:

Angular Art Gallery Problem (AAGP)
Given: A polygon P
Wanted: A covering C, feasible wrt. P with ]C minimized



2 Upper Bound for Histogram
Polygons

It is generally assumed that a total floodlight angle of (n− 1)π6 is always sufficient to
cover any polygon with n vertices completely. In this chapter, we present a constructive
proof, confirming this upper bound for histogram polygons.

Definition 5 (Histogram). A histogram is a polygon P with n vertices, where one edge
functions as the baseline s. The line segment orthogonal to s between any vertex v and s
is within P. The other n− 1 edges are called peak edges.

s

v

s

Figure 2.1. Only the left polygon is a histogram because in the right one the line segment
orthogonal to s between v and s is not within the polygon.

2.1. Covering Algorithm
We present an algorithm, providing for a given histogram with n vertices a set of
floodlights, which covers the histogram with a total floodlight angle of at most (n− 1)π6 .
Intuitively, the algorithm explores the histogram from left to right and use an angle of at
most π

6 to cover each peak edge. Later, we will show that the whole polygon is covered,
when all peak edges are covered.

Initially, we fix some details of the examined polygon. We assume that the baseline s
lies on the x axis and the peak edges are located above s. In the following, a histogram
is labeled as shown in Figure 2.2: The vertices as well as the peak edges are numbered
ascending from left to right, starting with 0.

Furthermore, we define the left and right visibility extension of a peak edge, which is
used several times.

Definition 6 (Left and right visibility extension). Let e be a peak edge in a histogram.

1. e is called an upward edge, if the distance between the left vertex of e and s is
strictly lower than the distance between right one and s. Otherwise, it is called a
downward edge.
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sv0

e0

v1

e1

en−2

vn−1

Figure 2.2. The edges and vertices of a histogram are numbered ascending from the left to the
right. The baseline is labeled as s.

2. The left visibility extension VEleft(e) of e is the ray that extends e to the left. If
e is an upward edge, the left visibility extension extends e downwards, otherwise
upwards.

3. The right visibility extension VEright(e) of e is the ray that extends e to the right.

4. In the special case that e is orthogonal to s, both, VEleft(e) and VEright(e) are the
rays, extending e downwards.

Since VEleft(e) and VEright(e) are defined as rays, they may intersect with more than
one edge of the polygon. In the following, we define an intersection of VEleft(e) and
VEright(e) with the polygon as follows: If e is orthogonal to s, VEleft(e) = VEright(e)

intersects with s. Otherwise, consider the vertx vl, which forms the left endpoint of e.
If vl is convex, the intersection of VEleft(e) with the polygon is vl. If vl is reflex, the
intersection of VEleft(e) is defined as the intersection with the polygon that is nearest to
vl, but not vl itself. The intersection of VEright(e) is defined analogously.

Starting with e0, the algorithm iterates over the peak edges from left to right and treats
six different cases in every iteration. Three different kinds of floodlights will be placed
during this process: Forward and backward covering floodlights, which are floodlights
placed on the baseline s and cover the polygon with an angle of at most π

2 to the right
and to the left, respectively. Furthermore, there are triangle floodlights, placed in a
defined triangle on the corner with the smallest internal angle, covering the triangle.

In the following, we give an informal description of the six cases the algorithm dis-
tinguishes when reaching a new edge. The cases have an hierarchical structure, i.e. a
case may apply to an edge, only if all preceding cases do not hold. For each case is a
condition and a floodlight placement action given. A formal definition can be found in
Appendix A. Let ei be the currently considered edge.

Case 1
Condition: ei is completely covered by a triangle floodlight, by a forward covering

floodlight placed below an edge ej , j < i and ei is visible from vj (see
Figure 2.3a), or by a backward covering floodlight placed below an edge
ej , j > i and all edges between ei and ej are visible from vj+1 (see Figure 2.3b).

Placement: No floodlight is placed in this case.
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ej

ei

(a) ei is visible from vj and a forward cov-
ering floodlight is placed below ej .

ei

ej

vj+1

(b) A backward covering floodlight is placed
below ej , ei is visible from vj+1 and all
edges between ei and the floodlight are
visible from vj , too.

Figure 2.3. Case 1: ei is already covered.

ei
vi+1

ei+1
vi+2

ei+2

fp

(a) The second vertex convex. By placing
floodlights on fp and vi+1, the overall an-
gle is at most π

2 and the floodlights cover
at least three edges.

ei+1
ei+2

≤ π
2 ei

vi+1

ei+1
vi+2

ei+2

fp

(b) The second vertex is reflex, too. By placing
floodlights on fp, vi+1 and vi+2, the over-
all angle is at most π

2 and the floodlights
cover at least three edges.

Figure 2.4. Case 2: The vertex vi+1 is reflex.

If Case 1 does not apply to ei, VEleft(ei) intersects with s. We select this inter-
section point, called fp, as a possible location to place a forward covering floodlight.
Case 2
Condition: The vertex vi+1 is reflex (see Figure 2.4).
Placement: A forward covering floodlight is placed on fp and its visibility cone gets

expanded by placing a second guard on vi+1, as visualized in Figure 2.4a.
If vi+2 is convex, the first three edges are covered with an overall angle of
at most π

2 . Otherwise, the visibility cone gets expanded a second time by
placing a third floodlight on vi+2 (see Figure 2.4b). The overall angle is still
at most π

2 , since the angle between the first and the last edge in a sequence
of edges with reflex vertices is at most π

2 in a histogram. At least these three
first edges are covered.
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When neither Case 1, nor Case 2 applies to ei, the vertex vi+1 is convex. Hence,
the edge ei+1 is visible from fp and a floodlight on fp covers at least ei and ei+1.
Case 3
Condition: The second vertex vi+2 behind ei is convex, too.
Placement: A floodlight with an angle of at most π

2 is placed on fp and covers at least
the three edges ei, ei+1 and ei+2 (see Figure 2.5).

Case 4
Condition: The second vertex vi+2 is reflex, but there is at least one edge ej with j > i+ 1,

which is visible from vi and not covered as required in Case 1. Furthermore,
vj is reflex (see Figure 2.5).

Placement: A forward covering floodlight on fp with an angle of at most π
2 covers at least

ei, ei+1 and ej .

ei

ei+1
ei+2

fp

(a) Case 3: Since vi+1 and vi+2 are convex, the
edges ei, ei+1 and ei+2 can be covered by a
floodlight on fp.

vi

ei

ei+1

ej

fp

(b) Case 4: There is an edge ej with j > i+ 1,
such that vj is reflex, ej is visible from vi

and ej is not covered, yet.

Figure 2.5. Cases 3 and 4

The last two cases occur only, if there is no edge with these properties. It may happen
that a forward covering floodlight is not longer sufficient to cover edges with an angle of at
most π

6 per edge. Hence, in the cases 5 and 6, the other two kinds of floodlights are used.
Case 5
Condition: The right visibility extension VEright(ei+1) of the second edge ei+1 intersects

with s.
Placement: The visibility extensions of ei and ei+1 form a triangle with some part of s

(see Figure 2.6). A floodlight is placed on the corner of the triangle with
the smallest internal angle, which is at most π

3 . It covers the whole triangle,
especially ei and ei+1.
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ei ei+1

fp

Figure 2.6. Case 5: The visibility extensions of ei and ei+1 intersects with s. A triangle
floodlight with an angle of at most π

3 is placed in the corner with the smallest
internal angle of the resulting triangle.

Case 6
Condition: If none of the cases 1–5 hold, case 6 applies. The right visibility extension

VEright(ei+1) of ei+1 does not intersect with s.
Placement: Let ej with j > i + 1 be the intersection edge of VEright(ei+1) and the

histogram. Let vj+r, r > 0 be the first reflex vertex after vj . Placing a
backward covering π

2 − floodlight on s at the x coordinate of vj+r, at least ei,
ei+1, ej , . . . , ej+r−1 are covered (see Figure 2.7). In the special case that the
same backward covering floodlight was already placed earlier and the edge
ej is already used, skip the placement, because ei is already covered by this
floodlight. In case 6, we have to skip the next edge ei+1, too, which is covered
by the same floodlight as ei.

ej

VEright(ei+1)

ei

ei+1

fp

(a) The right visibility extension of ei+1 inter-
sects with an edge ej , j > i+ 1. A back-
ward covering π

2 − floodlight covers at least
ei, ei+1 and ej .

ej

vj+r

VEright(ei+1)

ei

ei+1

fp

(b) If the vertex next after ej is convex, the
floodlight gets shifted until the first reflex
vertex occurs. Then, the edges between ej
and the floodlight are covered, too.

Figure 2.7. Case 6: Backward covering floodlight
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2.2. Adaption to Vertex Floodlights
Until now, the algorithm provides a covering with point floodlights only, since floodlights
may be placed on the edge s. In the following, a variant of the algorithm is presented,
which provides a covering with vertex floodlights only.

Consider a feasible covering as provided by the algorithm. The floodlights placed on a
vertex do not change. The remaining floodlights are placed on s. To replace them by
vertex floodlights, we make use of the convex hull of a subset of the polygon vertices.

Definition 7 (Convex hull). The convex hull of a finite set of points P is the smallest
convex polygon that includes all p ∈ P . The vertices of the convex hull are a subset of P .

Consider a forward covering floodlight f , placed on the intersection of s and the left
visibility extension of an edge ei. The convex hull of the vertices v0, . . . , vi consists of two
vertex chains, an upper and a lower vertex chain, both starting with v0 and ending with vi
(see Figure 2.8a). We consider the lower chain that is closer to s. The considered floodlight
with an angle ]f can be split to a set of floodlights f0, . . . , fk, located on the vertices
of the lower chain of the convex hull, whose overall angle is ]f0 + · · ·+]fk = ]f (see
Figure 2.8b). Analogously, the same procedure works for backward covering floodlights,
placed on the x coordinate of the right vertex of ei with the convex hull of vi+1, . . . , vn−2.
Since we always use π

2 –floodlights for backward covering, ]f0 + · · ·+]fk ≤ ]f .

v0

vi

ei
upper chain

lower chain
f

(a) The convex hull of the vertices v1, . . . , vi
consists of two vertex chains, an upper and
a lower chain.

f0

f1

f2

f3

ei

(b) By placing floodlights on all vertices of the
lower convex hull chain, the point guard
can be replaced by vertex floodlights with
the same overall angle.

Figure 2.8. Example of point guard to vertex guard conversion.

However, this method of point floodlight replacement has some limitations in terms
of visibility. In general, the replacing vertex floodlights do not cover the same area as
the replaced point floodlights. Consider Figure 2.9. Both edges ẽ and ˜̃e are completely
covered by the floodlight f , but after the conversion to vertex floodlights, neither is
visible from one of the vertex floodlights. This results from the fact that none of the two
edges are visible from the vertices of the lower convex hull chain. However, this problem
is counteracted by the design of the original point floodlight algorithm. It ensures that a
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ei

ẽ

˜̃e

f

Figure 2.9. The edges ẽ and ˜̃e are visible from the point floodlight f , but not by its associated
vertex floodlights.

floodlight is only placed whenever the used edges are visible from the highest point of
the lower convex hull chain. As a result, an edge is covered by a point floodlight, if and
only if it is covered by the associated vertex floodlights, too.

2.3. Correctness and Time Complexity
In this section, the correctness of the presented algorithm is proven and an analysis of its
time complexity is given.

Correctness
Theorem 1. Given a histogram P with n vertices, the algorithm, presented in Section 2.1,
provides a feasible covering C with at most

⌊
n−1

2

⌋
point floodlights and ]C ≤ (n− 1)π6 .

Proof. We distinguish the six cases, summarized in Table 2.1. The algorithm treats one
peak edge in every iteration. Hence, it terminates after n− 1 iterations. In the following,
we call an edge used, if a floodlight uses an angle of at most π

6 with the argument that
it covers this edge. Hence, it have to be shown that no edge is used by more than one
floodlight to satisfy the bound. As an example, a floodlight placed in Case 3 uses the
edges ei, ei+1 and ei+2 and a floodlight placed in Case 5 uses only the edges ei and ei+1.
It can be seen that a floodlight placed in any case has an angle of at most xπ6 ,x ∈ {2, 3}
and uses and covers x edges.

Next, we prove that all edges ej with j < i are covered, when the algorithm reaches an
edge ei with 0 ≤ i < n− 1 by induction.

Consider i = 0. Trivially, VEleft(e0) intersects with s and no edge is used, yet. When
none of the first 5 cases apply to e0, the histogram has the following structure: v1 is
convex and v2 is reflex, VEright(e1) intersects not with s, but with a peak edge ej , j > 2.
This is exactly the configuration treated by case 6.

Assume the statement holds for an arbitrary edge ei−1 with 0 < i < n− 1. Consider
the edge ei. All preceding edges e0, . . . , ei−1 are already covered by induction hypothesis.
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Table 2.1. The six disjoint cases, the algorithm handles. A case includes the negations of all
previous cases.

Case Condition

1 ei is covered in a special way
2 vi+1 is reflex
3 vi+1 and vi+2 are convex
4 ∃j : j > i+ 1 : ej is not covered as required in Case 1, ej is visible from vi and

vj is reflex
5 VEright(ei+1) intersects with s
6 None of the above applies

If Case 1 applies to ei, it is already covered and will be skipped. As such, we assume
that Case 1 does not apply. We treat the remaining possibilities.

At first, we show that VEleft(ei) intersects with s. We show that this constellation
cannot occur by deriving a contradiction. Assume VEleft(ei) intersects with a peak edge
ek, k < i. By induction hypothesis, ek is already covered. Consider the different kinds of
floodlights that may cover ek:

(1) ek is covered by a forward covering floodlight:
A forward covering floodlight would also cover ei, since there cannot be an edge
located between VEleft(ei) and s and restrict the visibility of ei to the floodlight (see
Figure 2.10a).

(2) ek is covered by a triangle floodlight:
Triangle floodlights are exclusively placed in Case 5. Since VEleft(ei) intersects with
ek, ek has to be the left edge of the triangle and the floodlight has been placed in
iteration k. If vi is convex, ei = ek+1 holds and ei is the right edge of the triangle.
Hence, vi has to be reflex. With the same argument as in (1), the edge ei is visible
from vk. This also fulfills the criteria of Case 4 This is a valid configuration for Case
4, which would have been handled prior (see Figure 2.10b). Hence, ek cannot be
covered by a triangle floodlight.

(3) ek is covered by a backward covering floodlight f :
Consider a backward covering floodlight f that covers ek. We distinguish two cases:
(a) f was placed in iteration k (including the special case in Case 6 that the floodlight

is already placed):
Such a floodlight would have been placed exclusively in Case 6. If ei = ek+1, ei
would have been skipped as the special case in Case 6. Otherwise, vi is reflex
and the same arguments as in (2) hold.

(b) f was placed in an earlier iteration:
Assume f was placed in an earlier iteration l < k and is placed below an edge
ej , j ≥ k.
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• f lies between ek and ei (k ≤ j < i):
In this constellation, the edge ei is visible from the vertex vl (see Figure 2.10c).
If vi is reflex, el would have been treated in Case 4 and a forward covering
floodlight, that covers el, el+1 and ei, would have been placed instead of the
backward covering floodlight. Otherwise, vi is convex. Then, ej = ek = ei−1.
This constellation is treated in Case 6 and the backward covering floodlight
would not have been placed below ej , but below the next reflex vertex, which
is to the right of ei. Hence, such a backward covering floodlight cannot occur.

• f lies to the right of ei (j > i):
To simplify this proof step, we assume that VEleft(ek) intersects with s (see
Figure 2.10d). By successive applying this proof step to the edge, VEleft(ek)

intersects with, the result holds even, if VEleft(ek) intersects with another
peak edge. The edge ek is only skipped in Case 1, if all edges between ek
and the backward covering floodlight are visible from the vertex above the
floodlight, too. If this condition is fulfilled, all edges between ei and the
floodlight, including ei, are visible by this floodlight, too. Then, Case 1
would have been applied to ei, which is a contradiction. Hence, ek cannot
be skipped in Case 1 with the argument of the backward covering floodlight.
The only exception is the special case in Case 6, but this is already treated
above.

Altogether, when Case 1 does not apply to an edge ei, VEleft(ei) always intersects with s.

In all remaining cases, the edge ei+1 right after ei is used for covering. Next, we prove
that ei+1 is not previously used. Assume ei+1 is already used. The only configurations,
where an edge to the right of the current considered one is already used, occur in Case 4
or 6. If ei is covered by a forward covering floodlight in Case 4, this floodlight would
also cover ei and would apply to Case 1, regardless of whether vi+1 is reflex or convex. If
ei+1 is used by a backward covering floodlight in Case 6 and vi+1 is convex, ei would
apply to Case 1, too. Since ei is, as previously reasoned, an upward edge, it would be
covered by the backward covering floodlight and would apply to Case 1, even if vi+1 is
reflex. Consider the remaining possibly occurring configurations:

(1) vi+1 is reflex:
This configuration fits to of Case 2. A forward covering floodlight is placed to cover
ei, ei+1 and ei+2, and uses these edges, too. ei+2 is not used yet, by the same
arguments as ei+1: Neither a forward, nor a backward covering floodlight can cover
ei+2 completely without covering ei, too.

(2) vi+1 is convex:
(a) vi+2 is convex:

This is a configuration as required in Case 3. A forward covering floodlight is
placed to cover the edges ei, ei+1 and ei+2. ei+2 is not used yet: A backward
covering floodlight (Case 6), covering ei+2, would also cover ei. Furthermore,



14 2.3. Correctness and Time Complexity

vk

ek

ei

fp

(a) If ek is covered by a forward covering flood-
light, this floodlight covers ei, too.

vk

ek
ek+1

ei

fp

(b) ek cannot be covered by a triangle floodlight,
since ek would prior handled in Case 5 with
ej = ei.

el

el+1

ek
ej

ei

fp

(c) A backward covering floodlight between ek
and ei cannot occur.

el

el+1

ek

ej
ei

fp

(d) A backward covering floodlight, placed to
the right of ei and covers ek, will be ignored.

Figure 2.10. An edge ei, where VEleft(ei) does not intersect with s, but with a peak edge ek, is
already covered.

ei+2 is not used in Case 4 (forward covering floodlight), since there is the
condition that the preceding vertex vi+2 is reflex (see Figure 2.11).

(b) vi+2 is reflex:
• There is an edge ej , j > i+ 1 that is visible from vi, vj is reflex and it is not

covered as required in Case 1:
This is the condition of Case 4. A forward covering floodlight covers ei, ei+1
and ej . ej is not used, since otherwise, it would also be covered as required
in Case 1.

• There is no such edge and VEright(ei+2) intersects with s:
This fits to Case 5 and a triangle floodlight is placed and covers the edges ei
and ei+1.

• There is no such edge and VEright(ei+2) does not intersect with s, but with
another peak edge ej , j > i+ 2:
This remaining configuration is treated by Case 6. The edge ej may only be
used by a backward covering floodlight, placed in Case 6 earlier. Then, ei
would have been skipped without floodlight placing, since this would be the
special case in Case 6.



2. Upper Bound for Histogram Polygons 15

ei ei+1
vi+1

ei+2

Figure 2.11. In this configuration, the edge ei+2 is not treated in Case 4, since the preceding
vertex vi+2 is not reflex.

Because the preceding case analysis is exhaustive, one of the six cases applies to the
peak edge ei. The edge ei is always covered after the execution of one of the cases and it
will be proceeded with ei+1. In Case 6, ei+1 is covered, too and the next considered edge
is ei+2.

Finally, it remains to show that the determined covering is feasible. This follows due
to two properties of the algorithm. On the one hand, the floodlights are placed in a way
that each peak edge is covered. On the other hand, we have three kinds of floodlights:
The forward and the backward covering floodlights are placed on the baseline and cover
the areas between the baseline and all peak edges, covered by this floodlight. The third
kind are the triangle floodlights. These floodlights cover the whole triangle, especially
the whole area between the baseline and the two peak edges. Hence, the area under a
peak edge e is covered, if e is covered. Because all edges are covered when the algorithm
terminates, the whole polygon is covered, too.

Since an angle of at most π
6 is used to cover each of the n− 1 peak edges and at least

one edge is skipped, every time we place a floodlight, we obtain a total floodlight angle
of at most (n− 1)π6 and a maximum number of floodlights of

⌊
n−1

2

⌋
.

Time Complexity
Lemma 1. The time complexity of the algorithm is O

(
n2).

Proof. In a preprocessing step, a data structure which maps all polygon edges to the
intersections of their visibility extensions can be determined in O

(
n2). Using a suitable

data structure, the access to the intersection edges can be realized in asymptotic constant
time.

The algorithm iterates at most once over the n− 1 peak edges. In each iteration, one
of the six cases is handled. The Cases 2, 3 and 5 are treated in constant time. Case 6
takes O(n) time at finding the first reflex vertex right of ej . In the remaining Cases 1
and 4, the coverage of some edges by floodlights has to be checked. Checking and storing
the covered edges every time a new floodlight is placed can be done in O(n) time. Then,
the Cases 1 and 4 can be treated in constant time. The time complexity of the remaining
cases, where perhaps a floodlight is placed, increases by O(n). The maximum of all cases
is still O(n) with this modification.

Hence, the algorithm requires O
(
n2) time in the worst case.
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2.4. Worst Case Optimality
Consider the polygon, given in Figure 2.12. By decreasing d → 0, we obtain n−1

2
subpolygons, which have almost the shape of an equilateral triangle. The area in such a
subpolygon, visible from more than the three corresponding triangle vertices, is nearly
0. Hence, in an optimal AAGP solution, each of these triangles get covered effectively
independently. Let ε be the overall angle, saved by covering the lower part of the triangles
not independently of each other. This angle approaches 0, when decreasing d→ 0. In
Chapter 3, we show that a total floodlight angle of π

3 is required to cover an equilateral
triangle. This yields a total floodlight angle of the considered polygon of at least

n− 1
2

π

3 − ε = (n− 1)π6 − ε.

π
3

π
3

π
3

π
3

π
3

π
3d

Figure 2.12. Worst case optimality: For d→ 0, this polygon requires a total floodlight angle of
(n− 1)π6



3 Minimal Covering of Equi-
lateral Triangles

In this chapter, we examine a minimal covering of equilateral triangles with vertex
floodlights. An equilateral triangle is a triangle in which all three sides as well as the
three internal angles are equal. The internal angles are π

3 . Intuitively, a total floodlight
angle of at least π

3 is necessary to cover an equilateral triangle completely by placing a
floodlight on one vertex that covers the whole triangle. We present a formal proof of this
intuition, whose key ideas are outlined in the following.

Consider an equilateral triangle and an arbitrary covering of it with some set of vertex
floodlights. Let the vertices of the triangle be labeled as a, b and c. The angle bisector of
a is the line passing through a and cuts its internal angle into two equal smaller angles.
In the following, we write ma for the part that is within the triangle. If the triangle is
covered by floodlights on only one vertex, say a, we already require an angle of π

3 only
to cover the side opposite to a. Assume the covering consists of floodlights on at least
two vertices. In this case, the triangle is not covered completely by floodlights on vertex
a. We have to consider two different cases (see Figure 3.1). If ma is not covered by

a

b c

ma

(a) Case 1: ma is not covered by a floodlight
on a. As a result, an angle of π3 is required
to cover ma with floodlights on b and c.

a

b c

α

s

ma

(b) Case 2: ma is covered by a floodlight on
a. We select a line segment s that is not
covered by a and examine the angle that
is required to cover it with floodlights on
b and c.

Figure 3.1. The red filled areas are the visibility polygons of the floodlights placed on a.
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a floodlight on vertex a, an angle of π
3 is required just to cover this line segment with

floodlights on the vertices b and c. Otherwise, we can find another line segment s passing
through a that is not covered by a floodlight on a. With a good choice of s, we obtain
an angle 0 < α < π

6 and may therefore assume that a floodlight with an angle of at least
2(α− ε) for an arbitrarily small ε > 0 is placed on a and covers ma. We show that an
angle of at least π

3 − 2α is necessary just to cover the line segment s with floodlights on
the vertices b and c. With the floodlight on a, whose angle is at least 2(α− ε), follows
a total floodlight angle of at least 2(α− ε) + π

3 − 2α = π
3 − 2ε for an arbitrarily small

ε > 0.

Theorem 2. Given an equilateral triangle, a total floodlight angle of at least π
3 is required

to cover it completely.

Proof. Without loss of generality, the triangle is has side lengths of 1 and is defined
by the points a =

(
0,
√

3
2

)
, b = (−1

2 , 0) and c = ( 1
2 , 0) in the following. Consider an

arbitrary feasible covering C of it. If floodlights are only placed on one vertex, say a,
an angle of at least π

3 is required just to cover the side opposite to it. Otherwise, we
distinguish between two different cases, as explained above.
Case 1: ma is not covered by a floodlight on vertex a

Assume the angle bisector ma is not covered by a floodlight on vertex a (see Figure 3.1a).
Hence, s is completely covered by floodlights on b and c in C. The covering of ma consists
only of floodlights on the vertices b and c. Using the fact that the distance between b and
any point on ma is the same as the distance between c and this point, every floodlight
on c can be flipped along ma. Formally, each floodlight (c, δ1, δ2) with 2π

3 ≤ δ1 < π and
δ1 < δ2 ≤ π can be replaced by a floodlight (b,π − δ2,π − δ1), which covers the same
part of the perpendicular bisector with the same angle. As a result, a covering of s with
floodlights on vertex b only can be achieved with the same total floodlight angle as the
covering of s in C. Since ma is covered completely by floodlights on b, the angle has to
be at least π

3 .
Case 2: ma is covered by a floodlight on vertex a

If the first case does not hold, a floodlight on vertex a covers ma. In this case, we consider
the boundaries of its visibility polygon. Without loss of generality, we may assume that
the left boundary is closer to the bisector than the right one. Let α′ be the angle between
the left boundary and the bisector. We consider a line segment s passing through a that
lies close to the left boundary and is not covered by a floodlight on a. Let the angle
between s and ma be α = α′ + ε (see Figure 3.1b). We show that the overall angle,
required to cover s by floodlights on b and c, is at least π

3 − 2α. Since the floodlight,
placed on a, has an angle of at least α− ε on each side of ma, we obtain a total floodlight
angle of at least π

3 − 2ε for an arbitrarily small ε > 0. To examine the total floodlight
angle that is at least required to cover s with floodlights on b and c only, we make use of
two lemmas. Their correctness is shown at the end of this proof.
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a

q

β

γ

α

s

fB fC

(a) A minimum covering of s consists of two
floodlights fb and fc with angles β = γ.
The point on s, where the covering switches
from c to b is on the arc q.

a

b

q

sβ

α

π
6 − α

l1

l3

is,q

l2

(b) The angle β is smaller than or equal to
π
6 − α, since l3 ≤ l2 for all 0 < α < π

6 .

Figure 3.2. Visualization of a minimal covering of s.

Lemma 2. Consider a covering Cs of s, only containing floodlights, placed on b or c.
There are two angles 0 ≤ β, γ ≤ π

3 with β + γ ≤ ]Cs, such that two floodlights fb =(
b, π3 − β, π3

)
and fc = (c,π− γ,π) are sufficient to cover s completely (see Figure 3.2a).

Lemma 3. A minimum covering Cmin
s of s consists of two floodlights fb =

(
b, π3 − β, π3

)
and fc = (c,π− γ,π) with β = γ. Furthermore, the point on s, where the covering
switches from c to b, is on the arc q defined by Equation 3.1 (see Figure 3.2a).

q : x2 +

(
y+

1
2
√

3

)2
=

1
3,x ≥ 0 (3.1)

The coverage of s in C is at most as good as an optimal covering of s. Since s is covered
in C by floodlights placed only on b and c, we may conclude that this covering of s is
at most as good as a covering with two floodlights fb and fc with angles β and γ and
β = γ as defined in Lemma 2. By the choice of s, a floodlight on vertex a covers an area
with an angle of at least (α− ε) on both sides of ma. Finally, it remains to show that
β + γ + 2(α− ε) ≥ π

3 . Consider the triangle, defined by a, b and is,q, where is,q is the
intersection point of s and c (see Figure 3.2b). The side l1 between a and b is the longest
side of the triangle for any 0 < α < π

6 . Therefore, the angle β is greater than or equal to
π
6 − α, if and only if the length of the side l2 between a and is,q is greater than or equal
to the length of the side l3 between b and is,q. Since is,q is on the arc q, l2 gets greater
and l3 gets smaller when increasing the size of α. As a result, it is sufficient to show that
l2 ≥ l3 for α = 0.
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For an angle α = 0, the intersection of s and the arc c is at x = 0. Evaluating c at
x = 0 yields

x2 +

(
y+

1
2
√

3

)2
=

1
3

x=0⇐⇒ ±
(
y+

1
2
√

3

)
=

1√
3

⇐⇒ y1 =
1

2
√

3
, y2 = −

√
3

2 .

Only y1 is within the triangle. This leads to lengths of l2 and l3 of

l2 =

√√√√(0− 0)2 +

(√
3

2 −
1

2
√

3

)2

=
1√
3

l3 =

√(1
2

)2
+

( 1
2
√

3

)2
=

√
1
4 +

1
12 =

1√
3

.

As suspected, l2 ≥ l3 holds for all 0 < α < π
3 , which leads to β ≥ π

6 − α. With β = γ we
obtain

β + γ + 2(α− ε) β=γ= 2(β + α− ε)
β≥π6−α
≥ 2

(
π

6 − α+ α− ε
)
=
π

3 − 2ε.

This angle is the at least required angle to cover the equilateral triangle completely for
an arbitrary small ε > 0. Assume there is a feasible covering with a total floodlight angle
of π

3 − x <
π
3 . Selecting ε = x

2 leads to a contradiction. Hence, an angle of π
3 is required

to cover an equilateral triangle completely.

It remains to show the correctness of the two previously used lemmas.

Repetition of Lemma 2. Consider a covering Cs of s, only containing floodlights,
placed on b or c. There are two angles 0 ≤ β, γ ≤ π

3 with β + γ ≤ ]C∫ , such that two
floodlights fb =

(
b, π3 − β, π3

)
and fc = (c,π− γ,π) are sufficient to cover s completely.

Proof. Consider an arbitrary covering Cs = f0, . . . , fm,m ∈N of the line segment s with
floodlights placed only on the vertices b and c. Each floodlight fi, 0 ≤ i ≤ m covers a
part of s, defined by an interval Ii = [yi, y′i] on the y axis with 0 ≤ yi < y′i ≤

√
3

2 (see
Figure 3.3). The floodlights are ordered by increasing yi values of the corresponding
intervals. Formally, for two intervals Ik and Il with k < l, holds yk < yl. We ignore
floodlights that cover an interval on s that is already fully covered by one other floodlight,
since these floodlights do not affect the covering of s. Hence, yl < yk ⇐⇒ y′l < y′k
holds. Floodlights that cover an interval which is already covered by a set of floodlights,
but not by one other floodlight alone, will not be ignored. Following, we examine for
each such interval, whether a floodlight on b or a floodlight on c could cover it with a
smaller floodlight angle. Let k be the minimal index, such that Ik could be covered by a
floodlight placed on b more efficiently than by one placed on c, i.e. with a strictly smaller
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a

b c

s

I0

I1

I2

I3

I4

I5

Figure 3.3. An exemplary covering of s with floodlights on b and c. The covering consists of six
floodlights that cover six non-disjoint intervals I1, . . . , I6 on s.

floodlight angle. We show that for all intervals Im with m > k, a floodlight on b would
also be the more efficient choice. As a result, the total floodlight angle of Cs is greater
than or equal to the total floodlight angle of a covering of s, where one floodlight, placed
on c, covers the interval

[
0, y′k−1

]
and a second floodlight, placed on b, covers the interval[

yk,
√

3
2

]
.

The proof is split in two parts. Initially, we show that an increase of y′k does not affect
the inequality β < γ, meaning the interval [yk, y′] can also be covered more efficiently by
a floodlight placed on b than by a floodlight placed on c for any

√
3

2 ≥ y
′ > y′k. Secondly,

we prove that an increase of yk does not affect the inequality β < γ, either. Formally, we
show

(1) β(yk, y′k) < γ(yk, y′k)⇒ β(yk, y′) < γ(yk, y′) for all yk < y′k < y′ ≤
√

3
2 ,

(2) β(yk, y′) < γ(yk, y′)⇒ β(y, y′) < γ(y, y′) for all yk < y < y′,

where β(y, y′) and γ(y, y′) describes the required angles to cover the interval [y, y′] by
floodlights placed on b and c, respectively.

Since the conclusion of (1) is the premise of (2), the successive execution of both
increasing steps allows an adaption to all intervals Ii with i > k.

We determine the functions β0 and γ0, mapping an y coordinate to the angle that
is required to cover the interval [0, y]. Utilizing these functions, we can propose the
functions

β(y, y′) =β0(y
′)− β0(y) and

γ(y, y′) =γ0(y
′)− γ0(y).
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By applying the trigonometric functions, we obtain the following functions for β0 and γ0:

β0(y) = arctan

 y
1
2 − tan (α)

(√
3

2 − y
)


γ0(y) = arctan

 y
1
2 + tan (α)

(√
3

2 − y
)
.

The following characteristics of β0 and γ0 are proven in Appendix B.2:

(1) β0(y) ≥ γ0(y) for all 0 ≤ y ≤
√

3
2

(2) The curves of the derivatives d
dxβ0 and d

dxγ0 have a unique intersection within the
relevant domain

[
0,
√

3
2

]
(3) d

dxγ0 <
d
dxβ0 at y = 0

(4) d
dxβ0 <

d
dxγ0 at y =

√
3

2

At first, we examine an increase of the upper interval boundary y′k. Since the angle
β(yk, y′k) is smaller than γ(yk, y′k), it follows with (1), that the gradient of β0 is smaller
than the gradient of γ0 in at least one point between 0 and y′k. With (2), (3) and
(4) we can conclude that the gradient of β0 is smaller than the gradient of γ0 for all
y′k < y <

√
3

2 . As a result, the function β(yk, y′) = β0(y′)− β0(yk) is also smaller than
γ(yk, y′) = γ0(y′)− γ0(yk).

Next, we consider an increase of the lower interval boundary yk. If the gradient of
β0 is smaller than the gradient of γ0 at yk, it follows that it is smaller than γ0 in the
whole interval [yk, y′], especially in the interval [y, y′], too. Hence, β(y, y′) ≤ γ(y, y′).
Otherwise, the gradient of β0 is greater or equal to the gradient of γ0 at yk. In this case,
we can increase yk until the gradient of β0 is smaller without the inequality between β
and γ being affected. This constellation is equivalent to the first case, where the gradient
of β0 is smaller than the gradient of γ0 for the whole remaining interval.

Repetition of Lemma 3. A minimum covering Cmin
s of s consists of two floodlights

fb =
(
b, π3 − β, π3

)
and fc = (c,π− γ,π) with β = γ. Furthermore, the point on s, where

the covering switches from c to b, is on the arc q defined by Equation 3.1.

Proof. With Lemma 2 it is proven, that a minimal covering of s consists of two floodlights,
one on vertex b that covers the upper part of s and one on vertex c that covers the lower
part.

We define the functions β :
(
0,
√

3
2

)
→
(
0, π3

)
and γ :

(
0,
√

3
2

)
→
(
0, π3

)
, which describe

the angles β and γ with respect to the y coordinate at which the covering switches from
c to b. These functions can be determined by applying the trigonometric functions (see
Figure 3.4) and are given by
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β(y) = arctan
(
l1
y

)
− π

6 = arctan
( 1

2 − l3
y

)
− π

6

= arctan

 1
2 − tan (α)

(√
3

2 − y
)

y

− π

6 (3.2)

γ(y) = arctan
(
y

l2

)
= arctan

(
y

1
2 + l3

)
= arctan

 y
1
2 + tan (α)

(√
3

2 − y
)
 (3.3)

a

b c

β

γ

√
3

2

1

α

yy

l1

l2

l3

π
6

s

Figure 3.4. The angles β and γ depend on y and can be determined by applying the trigonometric
functions.

The function β+ γ(y), obtained by summing over both functions, has a global minimum
in the domain

(
0,
√

3
2

)
. We will show that this minimum is reached, if and only if

β(y) = γ(y) holds. This is visualized in the plot in Figure 3.5.
The proof is split into two steps. The first step is to show, that the global minimum

is at the y coordinate of the intersection of s and q, labeled as iys,q. The extreme value
determination and the determination of the equality to the intersection point is given in
Appendix B.3 and B.4. The second step is to show that β(iys,q) = γ(iys,q) holds. For this,
consider Figure 3.6. According to the Inscribed Angle Theorem (see Appendix B.1), the
angle δ stays the same regardless of α. For α = 0 we obtain

β̃ = γ = arctan
( 1√

3

)
=
π

6 .
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0 iys,q
√

3
2

0

π
6

π
3

γ

β

β + γ

y coordinate

an
gl

e

β
γ
β + γ

Figure 3.5. The curves of β, γ and the sum β + γ for α = π
12 . The sum β + γ reaches a global

minimum, when β = γ holds. This is at the intersection iys,q of s and q.

a

b c

β
β̃ γ

δ

a

b c

1
2
√

3

1
2

β
β̃ γ

δ

Figure 3.6. According to the Inscribed Angle Theorem, β = γ holds at the intersection point of
s and q

With β̃ + γ + δ = π we get δ = 2π
3 , which holds for every α ∈

(
0, π6

)
. As a result, we

can describe β̃ with respect to γ for all α as β̃ = π− 2π
3 − γ = π

3 − γ. With β̃ + β = π
3

follows
β =

π

3 − β̃ =
π

3 −
(
π

3 − γ
)
= γ.



4 Upper Bound for Simple
Polygons

In this chapter, we derive a universal upper bound of (n− 2)π4 for simple polygons with
n vertices. We give a formal proof, which includes an efficient algorithm to determine a
covering, satisfying this upper bound. The idea of the proof is to partition a given polygon
in subpolygons and cover these subpolygons independently, similar to Chvátal’s proof of
the Art Gallery Theorem[6]. Furthermore, there similarities to Fisk’s alternate proof,
since the dual graph of a determined triangulation is used to find the subpolygons [16].

Initially, we give some definitions about elementary graph theory, used in this chapter.
A tree T = (V ,E) is a connected graph with vertices V and edges E ⊆ V × V that does
not contain any cycles, meaning any two vertices are connected by exactly one path.
In the following, we consider only undirected trees. The distance between two vertices
v,w ∈ V is the number of edges on the path between v and w. The degree of a vertex is
the number of its incident edges and the maximum degree of a tree T is written as ∆(T ).

Lemma 4. Each undirected tree T = (V ,E) with |V | > 1 and ∆(T ) ≤ 3 contains at
least one of the two structures given in Figure 4.1.

u w u w

w′

Figure 4.1. At least one of these structures exists in every tree with |V | > 1 and ∆(T ) ≤ 3.

Proof. Consider any vertex v ∈ V . Let w be the vertex with a maximum distance to v.
w is a leaf and its predecessor u has at most one other neighbor w′ besides the vertex on
the path to v, since the maximum degree is 3. w′ is also a leaf, since another neighbor of
w′ would have a larger distance to v as w, which is contradiction.

Lemma 5. Let T = (V ,E) be a tree with |V | > 1 and ∆(G) ≤ 3.
There is a partitioning of V in subsets V1 ∪̇ . . . ∪̇ Vk = V with 2 ≤ |Vi| ≤ 3 for all
0 < i ≤ k− 1 and 1 ≤ |Vk| ≤ 3, such that the vertices in each subset are adjacent in G.
If |Vk| = 1, there is at least one subset of size 3.

Proof. By Lemma 4, there is at least one of the structures described above in T . Removing
an arbitrary representant to obtain T ′ still yields a tree and Lemma 4 can be applied
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recursively until a tree with |V | ≤ 4 has been obtained. Since we remove at most three
vertices in each step, the remaining graph contains at least two vertices. If |V | ∈ {2, 3},
V forms the last partition. Otherwise, |V | = 4 and the remaining graph is structured
either as a chain or as a star (see Figure 4.2). In the first case, the four vertices can be
split into two partitions of size 2. In the second case, we obtain one partition of size 3
and one of size 1.

Figure 4.2. The only two trees with |V | = 4 and ∆(G) ≤ 3.

Lemma 6. Given a polygon P with n ∈ {3, 4, 5} vertices, there is a feasible covering C
with

]C ≤ (n− 1)π6 .

Proof. Consider a polygon P with n ∈ {3, 4, 5} vertices.

n = 3 : P is a triangle and can be covered with a guard placed on the vertex with the
smallest internal angle, which is ≤ π

3 .

n = 4 : If P is convex, a guard on the vertex with the smallest internal angle, which is
at most π

2 , covers it completely. Otherwise P has one reflex vertex vr. If the angle of
the vertex v′r opposite to vr is v′r ≤ π

2 , a guard on it covers P completely. Otherwise,
the remaining two angles φ1 and φ2 have to satisfy φ1 + φ2 <

π
2 , since the sum of all

internal angles is 2π and the angle of the reflex vertex is vr > π. Two guards on these
vertices cover P completely (see Figure 4.3).

≤ π
2

vr

> π
2

φ1

> π
φ2

vr

Figure 4.3. In a reflex quadrangle, either the vertex opposite to the reflex one is or the sum
φ1 + φ2 is ≤ π

2 .
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n = 5: A polygon with 5 vertices is called pentagon. We differentiate the possible
occurring constellations with respect to the number and order of reflex vertices. A
pentagon has at most two reflex vertices, lying side by side or with one convex vertex
lying in between. In the following, the order of convex and reflex vertices is described
as a chain of letters, where c is a convex and r a reflex vertex. P is labeled with vertices
a, b, c, d and e and internal angles φa,φb,φc,φd and φe. If a vertex x ∈ {a, b, c, d, e} is
reflex, the angle φ′x is defined as φ′x = φx − π, describing only the overlapping part of
the internal angle φx > π.

Case 1 (c - c - c - c - c): P is convex. A floodlight on the vertex with the smallest internal
angle, which is at most 3π

5 < 4π6 , covers P completely.

Case 2 (r - c - c - c - c): One vertex of the pentagon, e.g. a, is reflex. We differentiate
between two cases.

Case 2.1: The polygon can be partitioned into two triangles (see Figure 4.4b). Each
triangle can be covered with an angle of at most π

3 . When a guard is placed on
an edge, but not on a vertex, it can be split and shifted to two vertices without
increasing its angle or restricting its visibility polygon (see Figure 4.4c).

Case 2.2: The whole polygon is visible from at most one of the two vertices not
adjacent to a, say d (see Figure 4.4d). Since the sum of the internal angles of a
polygon with n vertices is (n− 2)π, 3π is the internal angle sum in a pentagon.
We obtain φ′a + φb + φc + φd + φe = 2π. If φd ≤ 2π

3 , a floodlight on d covers P.
Assume φd > 2π

3 . We obtain φ′a + φb + φc + φe <
4π
3 . Two floodlights placed either

on a and c or b and e with respective covering angles of φ′a + φc and φb + φe would
suffice to cover P completely. Either φ′a + φc ≤ 2π

3 or φb + φe ≤ 2π
3 .

Case 3 (r - r - c - c - c): Two reflex vertices, i.e. a and b, are adjacent in P , as visualized
in Figure 4.4e. Without the reflex parts of the reflex vertices, an angle of φ′a + φ′b +

φc+ φd+ φe = π remains. The whole polygon is visible from d, which is not adjacent
to a and b. Hence, a guard on d covers P, if φd ≤ 2π

3 . Assume that φd > 2π
3 . The

remaining angles amount to φ′a + φ′b + φc + φe <
π
3 remains. Guards on a, c and e,

oriented as the angles φ′a, φc and φe, cover P completely.

Case 4 (r - c - r - c - c): Consider a pentagon with two non-adjacent reflex vertices, i.g.
a and c (see Figure 4.4f). Consider the only triangulation of P , splitting P into three
triangles abc, acd and ade. From d, two triangles are completely visible, the third one
is visible from b. Furthermore, a floodlight on a and one on e with angles φ′a and φe
may cover all three triangles. Since φ′a + φb + φ′c + φd + φe = π, either φd + φb ≤ π

2
or φ′a + φe ≤ π

2 .
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(a) Case 1: The pentagon is convex and can
be covered by a guard with an angle ≤ 3π

5 .
(b) Case 2.1: The pentagon can be split in two

triangles, which can be covered each with
an angle ≤ π

3 .

]f1

]f3

]f2

(c) A floodlight that is not placed on an edge
can be replaced by vertex floodlights, cover
the same or a larger area with an equal
total covering angle.

d c

b

a

e

φd φc

φbφ′a

π

φe

(d) Case 2.2: P is completely visible from d,
from a and c or from b and e. Either φd,
φ′a + φc or φb + φe is ≤ 2π

3 , since the sum
of all is 2π.

d

c

b
a

e

φd

φc
φ′b

π

φ′a

π
φe

(e) Case 3: When φd > 2π
3 , φ′a + φc + φe <

π
3 .

Both cover P completely.

b

c d

e

a

φb

φd

φe

φ′a
π

(f) Case 4: P can be covered by guards with
angles φ′a and φe or with angles φd and
φb. Since an internal angle of π is split on
φ′a,φb,φ′c,φd and φe, one of these sums is
at most π

2 .

Figure 4.4. The five possible structures of a pentagon with respect to the number and order of
reflex vertices.
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Theorem 3 (Upper bound for simple polygons). Given a simple polygon P, an angle of

(n− 2)π4

is always sufficient, to cover P completely.

Proof. Each polygon can be triangulated into n− 2 triangles. Given such a triangulation
TP of P, we consider the dual graph G(TP ) = (V ,E) of the triangulation. V contains
a vertex per triangle in TP and two vertices are connected by an edge, if and only if
the corresponding triangles share a (common) face. Since a triangle has only three
faces, G(TP) has a maximum degree of ∆(G) ≤ 3. Furthermore, G(TP) is a tree. Using
Lemma 5, the triangulation can be partitioned in at most n−2

2 sets of adjacent triangles
of size ≤ 3. Each set forms a polygon with ≤ 5 vertices. Using Lemma 6, such a set
of three triangles can be covered with an angle of at most 2π

3 < 3π4 and a set of two
triangles can be covered with an angle of at most π

2 = 2π4 . A set of one triangle may
occur at most once, but only together with at least one set of three triangles. These two
sets can be covered with a total floodlight angle of at most π

3 + 2π
3 = 4π4 . Altogether we

obtain a covering angle of at most π
4 for each of the n− 2 triangles, whose union forms

the whole polygon P.

Lemma 7. Given a simple polygon P, a feasible covering C with ]C ≤ (n− 2)π4 can be
determined in O(n2).

Proof. A triangulation TP can be determined in a simple way by using the ear clipping
method: [24] explains that each polygon with n > 3 contains at least two ears, that being
triangles where only one face is inside the polygon and the other two faces are edges of the
polygon. In [11], an algorithm capable of finding such an ear in O(n) time is presented
that finds. We may obtain a triangulation in O(n2) by iteratively removing such an ear,
until we are left with only a triangle. More complex algorithms are able to determine
a triangulation in linear[5], respectively linear expected [2] time. After determining a
triangulation TP , we can use the approach of the constructive proof of Lemma 4 to
determine sets of adjacent vertices in G(TP) in O(n) for each set. Finally, each set of
triangles is covered by placing floodlights in constant time as shown in Lemma 6. Overall,
we get a time complexity of O(n2).
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(a) A simple polygon P. (b) Step 1: Determine a triangulation TP .

(c) Step 2: determine the dual graph G(TP ). (d) Step 3: Partition the vertex set of G(TP )
in sets of adjacent vertices, at most one of
them of size 1.

(e) Step 4: Applying the partitioning to the
triangles, we get a set of polygons with at
most 5 vertices.

(f) Step 5: Place guards with a total covering
angle of at most (ni− 1)π6 in each subpoly-
gon Pi with ni vertices.

Figure 4.5. Functioning of the algorithm to determine an (n− 2)π4 upper bound covering.



5 Further Aspects and Future
Work

5.1. Improvement of the Upper Bound
The upper bound for simple polygons, given in Chapter 4, may be improved by assuming
that an upper bound of (n− 1)π6 holds for simple polygons with n < 2k+ 2 vertices and
a fixed constant k ∈N. As a result, a polygon could be partitioned in larger subpolygons,
which leads to a smaller average covering angle per triangle in the triangulation.

Conjecture 1. Given a simple polygon P with n < 2k+ 2 vertices, there is a covering
C, feasible for P, with

]C ≤ (n− 1)π6 .

Given a graph G = (V ,E) and a vertex set V ′ ⊆ V , we define G− V ′ as the graph G
without the vertices in V ′ and their incident edges. The following lemma is a generalization
of Lemma 4 and is used in Theorem 4 below.

Lemma 8. Consider an undirected tree T = (V ,E) with |V | ≥ k vertices and ∆(T ) ≤ 3.
There is a vertex set V ′ ⊆ V with k ≤ |V ′| < 2k, such that T − V ′ stays connected.

Proof. For k ≤ |V | < 2k, the lemma holds with V ′ = V . Assume |V | ≥ 2k. Consider the
smallest subset V ′ ⊆ V with |V ′| ≥ k, such that T −V ′ is not empty and stays connected.
Such a V ′ must always exists, since selecting all vertices except one leaf provides a valid
solution. Consider the vertex v ∈ V ′ that connects V ′ with the rest of T . If v has a
degree of 2, there are at most k− 1 other vertices in V ′, because otherwise V ′ \ {v} would
provide a smaller subset (see Figure 5.1, left). If the degree of v is 3, V ′ consists of v and
two vertex subsets V ′1 and V ′2 , connected by v. Each subset has to contain at most k− 1
vertices, since otherwise, one of those would provide a smaller subset (see Figure 5.1,
right). As a result, |V ′| = |V ′1 |+ |V ′2 |+ 1 ≤ 2(k− 1) + 1 = 2k− 1.

Assuming the correctness of Conjecture 1 for a fixed k ∈ N, we can determine the
following upper bound for simple polygons.

Theorem 4. Assume Conjecture 1 holds for a fixed k ∈N. Given a simple polygon P
with n vertices, a total floodlight angle of at most

(n− 2)
(

1 + 1
k

)
π

6

is always sufficient to cover P completely with vertex floodlights.
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v V ′ \ {v}

V ′

v

V ′1

V ′2

V ′

Figure 5.1. Let V ′ be the smallest subset, such that |V ′| ≥ k and G− V ′ stays connected. v
is the vertex that connects V ′ with the rest of G. Since ∆(G) ≤ 3, V ′ takes one
of these two forms. None of the subsets V ′ \ {v}, V ′1 and V ′2 has more than k− 1
vertices, resulting in a size of k ≤ |V ′| < 2k.

Proof. Under the assumption of the correctness of Conjecture 1, this upper bound holds
with the same arguments as the proven upper bound in Chapter 4. Consider a given
polygon P with n vertices. If n < 2k+ 2, we obtain a total floodlight angle of at most
(n− 1)π6 , according to Conjecture 1. Assume n ≥ 2k+ 2. Considering a triangulation TP
of P , the dual graph G(TP) is a tree and has a maximum degree of ∆(G) ≤ 3. According
to Lemma 8, G(TP) can be partitioned in subsets V1, . . . ,Vl−1, l ≤ n of adjacent vertices
with sizes k ≤ |Vi| < 2k, 0 < i < l, until the remaining graph contains x1 < 2k vertices,
which forms the last subset Vl. The second last subset Vl−1 contains at least x2 ≥ 2k− x1
vertices, since otherwise Vl and Vl−1 would form only one subset with less than 2k vertices.

Each of the subsets Vi, 0 < i ≤ l, defines a polygon Pi with |Vi|+ 2 vertices, formed by
|Vi| triangles in the triangulation. Using Conjecture 1, the first l− 2 polygons P1, . . . ,Pl−2
can be covered with a total floodlight angle of at most (|Vi|+ 1)π6 each, resulting in an
average angle per triangle of at most

|Vi|+ 1
|Vi|

π

6 =

(
1 + 1
|Vi|

)
π

6
|Vi|≥k
≤

(
1 + 1

k

)
π

6 .

Consider the remaining two subpolygons Pl−1 and Pl with x1 + 2 and x2 + 2 ≥ 2k−x1 + 2
vertices, respectively. The total floodlight angle for these subpolygons is at most (x1 + 1)π6
and (x2 + 1)π6 , respectively. We obtain an overall angle for the last two subpolygons
with x1 + x2 triangles in the triangulations of at most

(x1 + 1)π6 + (x2 + 1)π6 = (x1 + x2 + 2)π6 .

This leads to an average angle per triangle of

x1 + x2 + 2
x1 + x2

π

6 =

(
1 + 2

x1 + x2

)
π

6
x2≥2k−x1
≤

(
1 + 2

x1 + 2k− x1

)
π

6 =

(
1 + 1

k

)
π

6 .

With this result, the gap between the assumed tight upper bound of (n− 1)π6 and
a proven upper bound can be reduced by proving the tight upper bound for a set of
polygons, restricted by their size.
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5.2. Duality to Independent Circle Packing
Given a polygon P , two set of points P1,P2 ⊆ P are called independent in P , if and only
if there are no two points p ∈ P1 and q ∈ P2, such that the line segment pq is contained
in P.

Consider the following problem of independent circle packing (ICP): Given a polygon
P, find a set of independent circles placed within P, such that the minimum total angle,
required to cover them with floodlights, is as large as possible (see Figure 5.2). We
will examine the duality between this maximization problem and the AAGP. Ones can
see easily that an optimal ICP solution always provides a lower bound to the AAGP.
Since the circles are independent, each of them is covered independently in the AAGP,
too. As a result, we obtain a duality between the minimization problem AAGP and the
maximization problem ICP.

Figure 5.2. The both circle packings to the left are independent. The packing with one circle
is probably better than the one with two vertices, since the total floodlight angle,
required to cover the large circle is probably larger than the one, required to cover
the two smaller circles. The right one is no valid packing, since the two circles are
not independent.

To explore a duality gap between these problems, we assume the correctness of the
following conjecture.

Conjecture 2. Given two circles cr and cR with the same center and radii r > 0 and
R > r, a minimum total floodlight angle of at least 2 arcsin

(
r
R

)
is required to cover cr

with floodlights placed anywhere within cR (see Figure 5.3).

cR cr

r

r

R α

Figure 5.3. Assuming the correctness of Conjecture 2, a total floodlight angle of α = 2 arcsin
(
r
R

)
is at least required to cover cr with floodlights placed within cR.
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d

d

m k-regular polygons

d

Figure 5.4. By connecting regular polygons with a small well, only one of these polygons can
be fully packed with a circle. The well prevents from packing circles of size larger
than half the inner polygon diameter in the other regular poolygons. In contrast,
each of these subpolygons has to be covered nearly independently in the AAGP.

Consider the polygon structure given in Figure 5.4. The polygon is constructed from m

regular polygons with k edges each, connected by a small well of height d. By decreasing
d→ 0, each of the subpolygons has to be covered almost independently in the AAGP.
Furthermore, by increasing k → ∞, the regular polygons approach circles. We obtain
the following packing in the ICP: A circle, spanned over the whole inner diameter of
a regular polygon, may only occur once. The remaining m− 1 regular polygons are
maximal packed with one circle of size close the half of the inner diameter of the regular
polygon. The well through the middle of each subpolygon prevents of packing a larger
circle, which would result in a larger required covering angle. We obtain the following
ICP solution, derived from Figure 5.5 assuming the correctness of Conjecture 2:

ICP(P) =

one large circle︷ ︸︸ ︷
(k− 2)π

k
+

m−1 circles of half size︷ ︸︸ ︷
2(m− 1) arcsin

(1
3

)

α

r

3r

Figure 5.5. One of the smaller circles may be covered by an angle of α = 2 arcsin
(1

3
)
.
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In contrast, each of the circles has to be covered nearly independently in the AAGP.
Using Conjecture 2, we obtain a minimum total covering angle of almost

AAGP(P) = m(k− 2)π
k
+ ε,

where ε is the angle, required to cover the well and approaches 0. For a large k and
m = k, we obtain a duality gap of

lim
k→∞

AAGP
ICP = lim

k→∞

k(k− 2)πk
(k− 2)πk + 2(k− 1) arcsin

(
1
3

) =
π

2 arcsin
(

1
3

) ≈ 4.622.

By allowing holes within the polygon, this gap can be arbitrarily large, since an
arbitrary large number of wells can connect the subpolygons.

5.3. The Full Angle Floodlight Problem
In this thesis, we discussed the AAGP. One could pose different questions such as: What
is the smallest total floodlight angle to cover a polygon, if the floodlight angle has to
match the internal angle of the vertex. In this section, we introduce this variant of the
floodlight problem, which has similarities to both, the fundamental AGP and the AAGP.
As in the AGP, the covering angle of a vertex floodlight is always the internal angle of the
corner, it is placed on. The difference to the AGP is that the question is not to minimize
the number of guards, but to minimize the total floodlight angle, equal to the question
in the AAGP. Formally, we introduce the problem as follows. ]v describes the internal
angle of a vertex v of the polygon.

Full Angle Floodlight Problem (FAFP)
Instance: A polygon P with vertices V
Wanted: min

{∑
g∈G]g | G ⊆ V ∧G covers P

}
In the following, we will explore the relations between the FAFP and the AGP, and

the FAFP and the AAGP.

Lemma 9 (FAFP and AAGP). A solution to the FAFP on a given polygon can serve as
an upper bound to solutions to the AAGP on the same polygon. The upper bound can be
arbitrarily bad.

Proof. Trivially, each FAFP solution is also a valid AAGP solution. To examine the
quality of the upper bound, consider the polygon P given in Figure 5.6a. It is constructed
from a small rectangle with k wells with height ` and width 1 placed on its long side.
For large `, no two of the red highlighted points in Figure 5.6a are visible from one
vertex. Hence, we need at least k full angle floodlights with an overall guard angle
of FAFP(P) = k π2 . In contrast, we can cover the polygon in the AAGP with one
π
2 -floodlight in the bottom left corner and two floodlights in each of the remaining k− 1
wells as illustrated in Figure 5.6b. For each well, the two guards requires a total covering
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`

1 1

1

k wells

(a) By increasing the number of k and substituting ` = k,
the total floodlight angle, required in the AAGP, is at
most π

2 + 2. In contrast, the at least required covering
angle in the FAFP behaves proportionally to k.

1

`

(b) Since we require an angle of π2
to cover the rectangle in the
FAFP, in the AAGP an angle
of arctan

(1
`

)
is sufficient.

Figure 5.6. The FAFP as an arbitrarily bad upper bound for the AAGP.

angle of 2 arctan
(

1
`

)
. Hence, AAGP(P) ≤ π

2 + 2(k− 1) arctan
(

1
`

)
. We achieve a quality

ratio of
FAFP(P)
AAGP(P) ≥

k π2
π
2 + 2(k− 1) arctan

(
1
`

) .

For a large value of k and ` = k, we obtain

lim
k→∞

→+∞︷︸︸︷
k
π

2
π

2 + 2(k− 1) arctan
(1
k

)
︸ ︷︷ ︸

→π
2 +2

→ +∞.

Lemma 10 (FAFP and AGP). Given a polygon P, consider optimal solutions to the
FAFP and the AGP. Let nFAFP and nAGP be the number of required guards in these
solutions and δFAFP and δAGP the required total floodlight angles. The following is always
true: nAGP ≤ nFAFP and δFAFP ≤ δAGP. Both upper bounds can be arbitrarily bad.

Proof. A solution of the AGP also provides a solution of the FAFP with value δAGP.
Vice versa, a solution of the FAFP provides a solution of the AGP with value nFAFP.
(1) AGP as an upper bound for FAFP
Consider the polygon P given in Figure 5.7. There is no combination of three of the 2k+ 1
points highlighted in red in P that is visible from the same vertex. Hence, one guard can
covers at most two of these points and at least k+ 1 vertex guards are required to cover
P completely as an AGP instance. There are different solutions to cover P with k+ 1
vertices. Thus, we consider the solution with the smallest total floodlight angle δAGP ,
consisting of guards placed on x,w′1, v2, . . . , vk−1 and vk. Hence, δAGP ≥ (k− 1)β+ γ+α.
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α

γ

β

w′3w3w′2w2w′1w1

v1 v2 v3 vk

w′kwk

x

l

Figure 5.7. No three of the red highlighted points are visible by the same vertex. Hence, a
minimal covering in the AGP consists of k+ 1 guards, placed on x, v2, . . . , vk. In
the FAFP, guards on w1,w′1, . . . ,wk,w′k provides an optimal solution.

In contrast, a solution of the FAFP with an angle ≤ 2kα+ γ can be determined by
placing guards on w1,w′1, . . . ,wk,w′k and x. We obtain a quality ratio of

δAGP
δFAFP

≥ (k− 1)β + γ + α

2kα+ γ
=

kβ + γ

2k arctan
(

1
`

)
+ γ

.

For a large k and by substituting ` = k we obtain

lim
k→∞

→+∞︷ ︸︸ ︷
(k− 1)β + γ + α

2k arctan
(1
k

)
+ γ︸ ︷︷ ︸

→2+γ

→ +∞.

(2) FAFP as an upper bound for AGP
Consider the star shaped polygon P as given in Figure 5.7. It is constructed as a star
with an odd number of k prongs, but one prong is directed inside the polygon to the
center m of the star. Hence, one vertex guard placed on m is sufficient to cover the
entire polygon. Using the fact that k is odd, we can determine two characteristics of
the star polygon. On the one hand, from an outer vertex vi, no other outer vertex vj is
visible, if ` is large enough. On the other hand, for a large `, only three outer vertices are
visible from an inner vertex wi, namely the adjacent vertices vi and vi+1 and the vertex
on the opposite side of m. Following, there are three kinds to cover the outer vertices
v1, . . . , vk−1:
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v1

v2 v3

v4
w1

w2

w3

w4

w5

`

β

α

m

k prongs

Figure 5.8. If k is the number of prongs, we obtain β = 2π
k . By increasing `, α approaches 0,

but β stays constant. For a large k and a large `, the required number of guards in
the AGP is one, placed on m. An optimal solution in the FAFP consists of k− 1
guards with an angle of α each.

1. Cover three outer vertices with a guard on an inner vertex, whose angle is (n−2)π
2n −α,

2. cover all outer vertices with one guard placed on m with an angle of 2π− β and

3. cover one outer vertex with a guard placed on it with an angle α.

Since β stays the same, when increasing the length `, the angle α converges to the limiting
value 0. Hence, for a large l, an optimal solution of the FAFP consists of k− 1 guards,
placed on the outer vertices v1, . . . , vk−1. We obtain a quality ratio of

nFAFP
nAGP

=
k− 1

1 = k− 1.

For a large k, the limiting value converges to

lim
k→∞

k− 1→ +∞.



6 Conclusion

Within this thesis, we have introduced a new variant of the floodlight problem, called
the Angular Art Gallery Problem. The angle of a floodlight in the AAGP is not fixed
to a constant value, but may be set individually for each floodlight. The AAGP asks
for a set of floodlights with a minimum total floodlight angle, covering a given polygon
completely.

We have presented three main results. Initially, we have proven an upper bound of

(n− 1)π6 (Histograms)

for histograms with n vertices. An iterative algorithm has been presented, determining
an upper bound covering for histograms by iterating over the peak edges and covering the
area between the baseline and an edge with an angle of at most π

6 per edge. This bound
has been proven to be worst case optimal by using the successive result for equilateral
triangles. Secondly, we have proven that an angle of

π

3 (Equilateral Triangles)

is required to cover an equilateral triangle with a finite number of vertex floodlights.
Given an arbitrary covering of the triangle, we can show that the summed up angle of
this covering is not smaller than this lower bound. Finally, we have given a general upper
bound for simple polygons. A total floodlight angle of at most

(n− 2)π4 (Simple Polygons)

is always sufficient to cover a given simple polygon with n vertices. The presented
algorithm uses a triangulation of the polygon to partitions this triangulation in sets of
adjacent triangles of a certain size. Afterwards, each new formed subpolygon is covered
independently, resulting in a solution, satisfying the proposed upper bound.

Future Work In the previous section, multiple objects of further research have already
been presented. In particular, the upper bound for simple polygons may be reduced
by proving a bound of (n− 1)π6 for simple polygons of limited size. Thus, proving this
bound for simple polygons with n ≤ 21 vertices would suffice to reduce the general bound
for simple polygons to 1.1-times the assumed tight bound of (n− 1)π6 . The introduced
FAFP provides a wide range of new questions, including upper and lower bounds. The
NP-hardness of the FAFP can be shown by applying a 3-SAT reduction, similar to the
one used in the hardness proof of the α-Floodlight Problem [3]. The literal and clause
gadgets can be adapted, such that certain guards are forced in an optimal solution.
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Besides, a generalization of the theorem for equilateral triangles to general triangles can
possibly be proven with methods, similar to the methods used here. First experiments
suggest that several of the results for equilateral triangles hold for general triangles, too.
Furthermore, a class of polygons, not examined in this thesis, are orthogonal polygons.
An upper bound of

⌊
n
4
⌋
π
2 could be proven by partitioning an orthogonal polygon into

L-shaped subpolygons and covering them independently, like shown in [25]. Finally, we
will complete this thesis like we introduced it: Solving the initial question about optimal
covering of rectangles and especially squares would help to construct a lower bound
example which would show that the upper bound for orthogonal polygons is tight.
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Appendices





A Histogram Covering Algorithm

A formal definition of the algorithm, introduced in Chapter 2, is given.

Algorithm 1 π
6 − histogram covering

Input A histogram P with n vertices
Output A feasible point floodlight covering C for P with ]C ≤ (n− 1)π6

1: i← 0
2: C = ∅
3: while i 6= n− 1 do
4: if not ei = 1 is covered like required in case 1 then . Case 1
5: fp← intersection(VEleft(ei) , s)
6: δ0 ← intersection angle of VEleft(ei) and s
7: if vi+1 is reflex then . Case 2
8: C ← C ∪ {(fp, 0, δ0)}
9: δ1 ← intersection angle of ei and ei+1

10: C ← C ∪ {(vi+1, δ0, δ0 + δ1)}
11: if vi+2 is reflex then
12: δ2 ← intersection angle of ei+1 and ei+2
13: C ← C ∪ {(vi+2, δ1, δ1 + δ2)}
14: else if vi+2 is convex then . Case 3
15: C ← {(fp, 0, δ0)}
16: else if ∃ j : i+ 1 < j < n : ej is not covered . Case 4

and vj is reflex
and ej is visible from vi then

17: C ← C ∪ {(intersection(VEleft(ej) , s) , 0, δ0)}
18: else if VEright(ei+1) intersects with s then . Case 5
19: Let f be the floodlight with the smallest angle that covers the

resulting triangle defined by ei, ei+1 and s
20: C ← C ∪ f
21: else . Case 6
22: fp← (x coordinate of the right vertex of VEright(ei), 0)
23: C ← C ∪

{(
fp, π2 ,π

)}
24: i← i+ 1
25: i← i+ 1
26: return C





B Equilateral Triangles

B.1. Inscribed Angle Theorem
Theorem (Inscribed Angle Theorem). Given a circle with
center c and three points p1, p2 and q, lying on the circle.
Let θ be the intersection angle of p1q and p2q. The relation
]p1cp2 = 2θ holds.
As a result, the angle θ stays the same, regardless of the
point q.

2θ

θ

θ

θ

p1 p2

c

B.2. Properties of β0(y) and γ0(y)
Consider the functions β0 and γ0 defined in Chapter 3:

β0(y) = arctan

 y
1
2 − tan (α)

(√
3

2 − y
)


γ0(y) = arctan

 y
1
2 + tan (α)

(√
3

2 − y
)
.

We show that these functions fulfill the following properties:

1. β0(y) ≥ γ0(y) for all 0 ≤ y ≤
√

3
2

2. The gradients of β0 and γ0 have a unique intersection within the relevant domain

3. At 0, the gradient of γ0 is smaller than the gradient of β0

4. At
√

3
2 , the gradient of β0 is smaller than the gradient of γ0

With respect to the first property, consider the triangles T1 and T2 in Figure B.1. Since
the line segment s is on the left side of the perpendicular bisector, the adjacent side l1 of
β0 is smaller than or equal to the adjacent side l2 of γ0 for all α and y. The opposite side
of both β0 and γ0 is y. According to the trigonometric functions the angle β0 is always
greater than or equal to γ0.

The remaining properties are shown by evaluation of β0′ and γ0′ at −1, 0 and
√

3
2 .

That results in β0′(−1) ≤ γ0′(−1), β0′(0) ≥ γ0′(0) and β0′(
√

3
2 ) ≤ γ0′(

√
3

2 ). Hence one
intersection is in the range [−1, 0), which is not relevant, since we consider only positive
y values. A second intersection is in the range [0,

√
3

2 ]. The derivations of β0 and γ0 are
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a

b c

y

β0 γ0

α

l1 l2

s

T1 T2

Figure B.1. Since l1 ≤ l2 for all α and all y, it follows β0 ≥ γ0.

of the form d
ax2+bx+c . Hence, their intersections can be determined with the quadratic

formula and the number of intersections is limited to 2.

B.3. Global Minimum of β(y) + γ(y)
Consider the functions β (Equation 3.2) and γ (Equation 3.3) given in Chapter 3:

β(y) = arctan

 1
2 − tan (α)

(√
3

2 − y
)

y

− π

6

γ(y) = arctan

 y
1
2 + tan (α)

(√
3

2 − y
)


Their respective first derivations are

d

dy
β(y) =

√
3 tan(α)− 1

2y2 + 2
(

1
2 − tan(α)

(√
3

2 − y
))2

d

dy
γ(y) =

tan(α)y+ tan(α)
(√

3
2 − y

)
+ 1

2

y2 +
(
tan(α)

(√
3

2 − y
)
+ 1

2

)2 .
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We can determine the extreme values of β(y) + γ(y) by setting the sum of its derivations
d
dyβ(y) +

d
dyγ(y) equal to 0:

0 =
d

dy
β(y) +

d

dy
γ(y)

⇐⇒ 0 =

√
3 tan(α)− 1

2y2 + 2
(

1
2 − tan(α)

(√
3

2 − y
))2 +

tan(α)y+ tan(α)
(√

3
2 − y

)
+ 1

2

y2 + (tan(α)
(√

3
2 − y

)
+ 1

2 )
2

⇐⇒ 0 =
(√

3tan(α)− 1
)y2 +

(
tan(α)

(√
3

2 − y
)
+

1
2

)2


+

(
tan(α)y+ tan(α)

(√
3

2 − y
)
+

1
2

)2y2 + 2
(

1
2 − tan(α)

(√
3

2 − y
))2


⇐⇒ 0 = 2

√
3 tan(α)

(
tan(α)2 + 1

)
y2 + 2 tan(α)

(
1− 3 tan(α)2

)
y

−
√

3
2 tan(α)

(
3 tan(α)2 − 1

)

⇐⇒ 0 = y2 +
1− 3 tan(α)2
√

3 (tan(α)2 + 1)
y+

3 tan(α)2 − 1
4 (tan(α)2 + 1)

⇐⇒ y = − 1− 3 tan2(α)

2
√

3 (tan2(α) + 1)
±

√√√√( 1− 3 tan2(α)

2
√

3 tan2(α) + 2

)2

− 3 tan2(α)− 1
4 (tan2(α) + 1)

To find the global minimum in the domain
(
0,
√

3
2

)
we have to prove three more things:

Only one of the two values is within the domain:

y = − 1− 3 tan2(α)

2
√

3 tan2(α) + 2︸ ︷︷ ︸
< 0 for all α ∈

(
0, π6
)
±

√√√√( 1− 3 tan2(α)

2
√

3 tan2(α) + 2

)2

− 3 tan2(α)− 1
4 (tan2(α) + 1)︸ ︷︷ ︸

≥ 0 for all α ∈
(

0, π6
)

The second zero value (−) is negative, so it can be ignored.
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The values at the boundaries 0 and
√

3
2 are greater than the local minimum:

Evaluation of β(y) + γ(y) at the boundaries yields

β(y → 0) = lim
y→0

arctan
( 1

2 − tan(α)
y

)
− π

6 =
π

2 −
π

6 =
π

3

γ(0) = arctan(0) = 0

β

(√
3

2

)
= arctan

(1
2 ·

2√
3

)
− π

6 = 0

γ

(√
3

2

)
= arctan

(√
3

2 ·
2
1

)
=
π

3

This implies a function value of π
3 at the domain boundaries. Section B.4 discusses

that the extreme value is always on an arc. At α = 0 the value of β + γ is π
3 . For

all α > 0 the value of β + γ is smaller than π
3 .

The relevant value is a local minimum:
This is a direct result of the previous result. If the extreme value would be a
maximum, there would be at least two more extreme values between the boundaries
and the extreme value.

B.4. Intersection of Arc c and Line Segment s

x

y

α

s

(
0,

√
3

2

)

(
−

√
3

2 tan (α), 0
)

Figure B.2. The upper end point of the line segment s is defined by the height of the triangle,
the lower end point can be determined by applying the trigonometric functions.
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Given the line segment s defined by α, we can determine the corresponding line g with
g(x) = mx+ b through the endpoints of s (see Figure B.2).

g(0) =
√

3
2 = m ∗ 0 + b

→ b =

√
3

2

g

(
−
√

3
2 tan (α)

)
= 0 = m ∗ −

√
3

2 tan (α) +

√
3

2

→ m =
1

tan (α)

Next, we determine the intersection of g and the circle c defined in Equation 3.1.

c :
1
3 = x2 +

(
y+

1
2
√

3

)2
(B.1)

g : y =
x

tan (α)
+

√
3

2

⇐⇒ x = tan (α)

(
y−
√

3
2

)
(B.2)

By substituting Equation B.2 into Equation B.1 we obtain the intersection point:

1
3 = tan 2 (α)

(
y−
√

3
2

)2

+

(
y+

1
2
√

3

)2

⇐⇒ 1
3 = tan 2(α)

(
y2 −

√
3y+ 3

4

)
+

(
y2 +

y√
3
+

1
12

)
⇐⇒ 1

3 =
(
tan 2(α) + 1

)
y2 +

( 1√
3
− tan 2(α)

√
3
)
y+

3
4 tan 2(α) +

1
12

⇐⇒ 0 = y2 +

1√
3 −
√

3 tan 2(α)

tan 2(α) + 1 y+
3
4 tan 2(α)− 3

12
tan 2(α) + 1

⇐⇒ 0 = y2 +
1− 3 tan 2(α)√
3 (tan 2(α) + 1)

y+
3 tan 2(α)− 1

4(tan 2(α) + 1)

⇐⇒ y = − 1− 3 tan 2(α)

2
√

3 tan 2(α) + 2
±

√√√√( 1− 3 tan 2(α)

2
√

3 tan 2(α) + 2

)2

− 3 tan 2(α)− 1
4 (tan 2(α) + 1)

This value equals to the value determined for the global minimum of the function
β(y) + γ(y) determined in Section B.3.
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