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Abstract

Embedding prior knowledge into recurrent neural networks can be useful, especially if
only a small amount of training data is available or the training data is very noisy. Reservoir
computing is a recurrent neural network framework that has been proven to be highly
efficient in learning temporal dynamic systems. Due to its specific structure consisting
of a high-dimensional, non-linear reservoir combined with a simple read-out layer, the
reservoir computing framework is predestined to be extended by an approach for the
explicit learning of prior knowledge. In this thesis, we introduce a framework which
enables the formalization of prior knowledge as mathematical constraints. The framework
covers a wide range of different constraints, including lower and upper bounds to the
network output and constraints concerning the periodicity, monotonicity and curvature
behavior of the network output with respect to the time. The framework is applied to the
Echo State Network, one of the major reservoir computing approaches. An algorithm for
training Echo State Networks under constraints is presented. Furthermore, it is shown
that the algorithm can be extended to Echo State Networks with output feedback. With the
forecasting of satellite images of woodland areas, the framework is applied to a practical
learning task.
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1 Introduction

Usually, artificial neural networks are trained by processing a set of training samples, each
of which consists of an input and an expected result. By internalizing the relation between
the input and the output data, the network learns to produce results close to the expected
ones. The concept’s key idea is to learn a model that generalizes to new data and may output
good results also for new data not available during the training process. This often works
quite well if the training dataset is large enough and represents the data domain well. When
dealing with model learning for time series like speech recognition, text analysis, or stock
market prediction, recurrent neural networks (RNNs) are state-of-the-art. In contrast to
feedforward neural networks, RNNs exhibit a kind of memory and thus can learn temporal
dynamic behavior. Due to its significantly higher complexity, training an RNN is much
more expensive and requires an even larger set of training data than feedforward neural
networks.

But how can we deal with tasks for which only very noisy or a very small amount
of training data is available? Often, the raw training data is not the only information
available about the task. It is common to use additional knowledge about the expected
inputs and expected outputs to improve the results by preprocessing the training data or
postprocessing the network predictions. One such example is outlier detection: Knowledge
about the smoothness of the target function is used to remove data points that do not
fit into the expected schema. In this thesis, we consider an alternative approach of using
prior knowledge in neural network learning. By formalizing this prior knowledge in the
form of mathematical constraints, these constraints can be embedded straight into the
neural network during the training process. As a result, no further pre- or postprocessing
of the data is necessary, since the neural network is not only able to generalize the relation
between the input and the output training data to new input data, but also to generalize
the constraints. Such constraints can express a wide range of different properties about
the learning function, e.g., about lower and upper bounds, the curvature, the smoothness,
the periodicity or the monotonicity of the function. Embedding suitable constraints into a
neural network can help to fill the gap of missing information in the training data.

Reservoir Computing is an umbrella term for RNNs with a specific network architecture.
The input is mapped to a high-dimensional, recurrent system, the so-called reservoir. This
system is fixed and induces a high non-linearity caused by its high dimensionality and a
suitable activation function. A read-out layer harvests the reservoir state and is trained to
compute the desired target outputs out of it. One reservoir computing approach is the
Echo State Network (ESN) [17], which, due to its architecture, is predestined to be extended
by the constraint learning approach.
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1.1 Related Work

In the early 2000s, Jaeger [16, 17], Maass et al. [31] and Natschläger et al. [32] proposed two
RNN structures, both combining a high-dimensional reservoir with the training of a single
read-out layer, simultaneously. The introduced concepts of the Echo State Network (ESN)
(Jaeger) and the Liquid State Machine (LSM) (Maas et al., Natschläger et al.) were the first
major reservoir computing approaches. While both networks are basically similar in their
ideas, they differ in their neuron concepts. The ESN uses the more conventional neuron
paradigm known from multiplayer perceptron networks. On the other hand, the LSM is
based on a spiking neuron model. A third reservoir computing concept, Backpropagation-
Decorrelation (BPDC), was suggested in 2004 by Steil [39]. By combining a backpropagation
RNN learning algorithm [1] with the concept of reservoir computing, BPDC turned out to
be an efficient online learning rule for RNNs. Subsequent papers analyzes the stabilitiy of
BPDC [41] and suggests further improvements concerning memory and regularization [40].
These three approaches were first unified in the reservoir computing framework in 2007 [44].
Later, further reservoir computing concepts were suggested, e.g., Evolino, which is a Long
Short-Term Memory RNN with a linear read-out [37]. Reviews to the reservoir computing
framework in general and overviews to the different approaches are given in [26, 27, 38].

The ESN, introduced in 2001, was a game-changer in the field of RNNs. RNNs always
lacked efficient training algorithms, which changed with the introdcution of the ESN.
Since then, much research has been done on ESNs. Practical guides to applying ESNs are
given by Lukoševičius [25] and Jaeger [18]. Several papers analyze the architecture of the
ESN or the ESN’s reservoir and suggest improvements and extensions in the reservoir
structure. In [36], the minimum complexity and memory capacity of ESNs is analyzed.
Gallichio et al. [8, 11] suggested the so-called deepESN, which applies the ESN approach
to the deep learning framework. Other variations includes, for example, ESNs with leaky
integrator neurons [19, 29], ESNs with multiple subreservoirs [12, 35] and convolutional
ESNs [30]. Several papers tackled the issues of the training of the read-out weights [45, 46]
and a good initialization of the ESN reservoir [5, 6, 24, 42].

The embedding of prior knowledge into neural networks is issued in several papers,
mainly concerning feedforward neural networks. The reliable embedding of specific kinds
of prior knowledge is issued in serveral papers, for example monotonicity constraints [7, 21]
or gain constraints [13]. A wider range of constraints without reliability verification are
supported by regression methods suggested by Sun et al. [43] and Lauer and Block [22].
Finally, the Constrained Extreme Learning Machine introduced by Neumann et al. [33, 34]
allows the embedding and reliability verification of a wide range of formal constraints into
the feedforward neural networks. Concerning RNNs, Chen et al. [4] proposed an approach
to embed first order logic rules into RNNs. Another paper presents an application of ESNs,
where prior knowledge is used to determine the reservoir topology [49].



1.2 The Constrained Extreme Learning Machine 3

1

uNu

y1

yNy

Win Wout

u1

random and fixed trained

Figure 1.1: The ELM is a feedforward neural network with randomly assigned input weights and a
trainable linear read-out layer.

1.2 The Constrained Extreme Learning Machine
This work builds on the Constrained Extreme Learning Machine (CELM) approach intro-
duced by Neumann, Rolf and Steil in 2013 [34] and thus a short introduction to the CELM
is given. An Extreme Learning Machine (ELM) [14, 15] is a feedforward neural network
with one input layer of size Nu, one hidden layer of size Nx and one output layer of size Ny

(see Figure 1.1). Mathematically, the network can be expressed as

y(u) = Wout σ

(
Win

[
1
u

])
, (1.1)

where [
1
u

]
=


1
u1
...

uNu

 (1.2)

is a vertical vector concatenation. Win ∈ RNx×Nu+1 and Wout ∈ RNy×Nx are the input and
output weights, respectively, and σ : R→ R an element-wise applied neuron activation
function, typically a sigmoid function like the logistic function. u ∈ RNu is the network
input and y ∈ RNy the corresponding network output. One can see that the outputs result
as linear combinations of the hidden layer neuron activations with read-out weights Wout

as coefficients. While the input-to-hidden layer weights Win are assigned randomly and
are fixed, only the output weights Wout are optimized during the training process. Hence,
optimizing the network in the sense of minimizing a training error ε is equivalent to
solving a linear regression problem and can be accomplished using a suitable algorithm
like ridge regression. A further detailed explanation is described in Section 2.3. This
approach is much faster than the computationally expensive backpropagation algorithm,
usually used to train feedforward neural networks.
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Figure 1.2: (a) The ELM without constraints tends to strong overfitting due to the few and noisy
training data. (b) The CELM with monotonicity constraints is much closer to the real
function and leads to a good generalization capability. Figures adapted from [33].

Neumann et al. [34] introduce a framework that exploits the linearity of the ELM’s read-
out weights and allows to force constraints to the network output. These constraints are
defined by linear combinations of partial derivatives of arbitrary order with respect to
arbitrary input variables. As a result, the framework supports a wide range of constraints
regarding partial derivatives of the learned function y. Some examples are

y1(u) is monotonously increasing with respect to the first input variable u1,

y3(u) is larger than or equal to c ∈ R or

The slope of y2 in the direction d ∈ RNu is larger than or equal to c ∈ R.

A constraint can be defined on the entire input space or only on particular subdomains.
An example of the impact of such constraints is visualized in Figure 1.2. A monotonicity
constraint is defined on the one-dimensional output y with respect to the one-dimensional
input u. Since only few and noisy training data is available, the standard ELM without
constraints tends to strong overfitting (Figure 1.2a). In contrast, the CELM enforces the
monotonicity of the output function and provides a much better generalization compared
to the ELM without constraints (Figure 1.2b).

Formally, a constraint L is defined as a function of an input u ∈ RNu as

L(u) =
Ny

∑
i=1

γiDmi
yi(u)− c (1.3)

with a bound c ∈ R, coefficients γi ∈ R, vectors mi = [mi
1 . . . mi

Mi ] ∈ {1, . . . , Nu}Mi

defining the input variables to which the differentiations are carried out and

Dmi
=

∂Mi

∂umi
1

. . . ∂umi
Mi

(1.4)
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the component-wise differential operator. The constraint is forced as L(u) ≤ 0 which is
equivalent to ∑

Ny
i=1 γiDmi

yi(u) ≤ c. For example, the monotonicity constraint applied in
Figure 1.2b can be expressed in this framework as

L(u) = −1 · D[1]y1(u) = −1 · ∂

∂u1
y1(u) = −1 · ∂

∂u
y(u), (1.5)

where c = 0 can be omitted and γ1 = −1. The constraint is evaluated as ∂/∂u y(u) ≥ 0.
Formally, the input and the output of the neural network are both vectors u = [u1 . . . uNu ]

T

and y = [y1 . . . yNy ]
T . But as already done in the previous example, if the vectors are

one-dimensional, we will write them as scalars u and y in this work.

1.3 Evaluation Metrics
By embedding constraints into a neural network, we deliberately influence and restrict
the range of possible outputs of the network. As a result, mathematically, the training
error cannot be smaller with constraints than without. It is even likely that the training
error becomes much bigger, especially if the training target outputs do not satisfy the
constraints. In the case the training samples are good representatives of the entire data
domain, the same will also hold for the test error. This behavior is excepted, since the
primary goal is no longer to minimize the training error, but to minimize the training
error while satisfying the constraints. This is a fact we always have to keep in mind when
evaluating machine learning models dealing with constraints since the quality of a model
can no longer necessarily be determined by the test error only. There are different use
cases of the constraint embedding, which result in different evaluation possibilities:

Suppose only a small amount of training data is available or the training data is
very noisy. In that case, constraints can help to learn a function that is closer to the
real one and thus provide a better generalization capability. The test error should
be smaller, if suitable constraints are used and the performance of the constrained
model can be evaluated on a test dataset as usual.

The second use case is similar to the first one. Here, the problem is not too few or
too noisy training data in the usual sense, but the training data does not represent
the desired network output. So-called ground-truth data is available, which is data
representing the expected network outputs well, especially the satisfaction of the
constraints. Using this data in a final evaluation, the test error should be a good
measurement of the quality of the model. Here, we assume that this data is not
available for training, for example because only very few ground-truth samples are
available.

In contrast to the first use cases, it is hardly possible to evaluate a model in the sense
of a test error if the constraints are embedded just because they are required, but
not to assist the training process. An example is that the model is only one part of a



6 1 Introduction

data pipeline and the following step requires specific constraints to its input data.
In this case, the primary evaluation metric should deal with the satisfaction of the
constraints. Evaluation metrics regarding the test error of the model can only be
compared between models that all satisfy the constraints.

1.4 Outline
In this thesis, the Constrained Echo State Network (CESN), a recurrent neural network
embedding prior knowledge in the form of constraints, is introduced based on the work of
Neumann, Rolf and Steil [34]. After introducing the topic in the first chapter, the basic CESN
model is introduced and elaborated theoretically in Chapter 2. The practical realization,
including the algorithmic implementation and an illustrative example, is described in
Chapter 3. In Chapter 4, an application of the CESN is presented, which deals with the
forecasting of satellite image time series of woodland areas. Finally, an extension of the
CESN is presented in Chapter 5, tackling the task of recursive predictions.



2 The Constrained Echo State
Network

In the following, an introduction to the basic ESN approach is given. A framework to
define constraints for ESNs is elaborated and finally, it is described theoretically how these
constraints can be embedded into the network during the training process.

2.1 The Basic Echo State Network
Echo State Networks (ESNs) are recurrent neural networks from the field of Reservoir
Computing. They are applied to supervised machine learning tasks with temporal dynamic
behavior and, due to their similar network structure, can be considered as the recurrent
counterpart to the ELM.

When dealing with temporal data, we no longer talk about single inputs u and outputs y,
but about input and output signals u(t) and y(t), which change with respect to a time t.
In the case of ESNs, these signals are defined on a discrete time scale t = 1, 2, . . . , T where
T ∈N is the number of data points in the signals.

Like the ELM, an ESN consists of one layer collecting the Nu-dimensional input u(t) ∈
RNu at time step t, one layer that produces the Ny-dimensional output y(t) ∈ RNy at time
step t and one hidden layer, the so-called reservoir. In between, the input layer is fully-
connected to the high-dimensional, recurrent reservoir, which induces a high-dimensional,
non-linear reservoir output x(t). We use the notation from Lukoševičius [25], where the
reservoir equation is defined as

x(t) = (1−α) x(t− 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
previous reservoir state

+ α σ

(
Win

[
1

u(t)

]
+ Wx(t− 1)

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

reservoir update

. (2.1)

Here, the activation function σ(·) of the reservoir update is applied element-wise. We use
the hyperbolic tangent tanh(·), but other sigmoid activation functions can, of course, also
be used. Win ∈ RNx×Nu+1 and W ∈ RNx×Nx are the input and reservoir weight matrices,
respectively and x(t− 1) is the previous reservoir state, responsible for the recurrence
of the network. The reservoir output x(t) ∈ RNx is computed as a convex combination
of the previous reservoir state x(t − 1) and the reservoir update. This so-called leaky-
integration [19] can be used to influence the network’s temporal characteristics. A small
leaking rate α can simulate slow temporal dynamics. The final read-out layer consists
of additive units, fully-connected with the reservoir layer. The network output is then
computed as a linear combination of the input u(t), the reservoir output x(t) and a bias,
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1

uNu

y1

yNy

Win

W
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Figure 2.1: The input layer is fully-connected to the reservoir layer, which in turn is fully-connected
to the read-out layer. The reservoir is basically fully self-connected, but its sparsity
results from the sparsity of the weight matrix W. While only the read-out weights Wout

are optimized, all other weights are randomly assigned and fixed.

where the coefficients are provided by the output weight matrix Wout ∈ RNy×Nu+Nx+1:

y(t) = Wout

 1
u(t)
x(t)

 . (2.2)

An illustrative network diagram, visualizing the ESN structure, is given in Figure 2.1. Like
the ELM, the ESN takes advantage of the read-out layer’s linearity. The recurrence of the
network can be decoupled entirely from the training process since the reservoir weights
are fixed and assigned independently from the training process. Hence, as with the ELM,
the ESN training can also be regarded as a linear regression problem, as described in detail
later in this chapter.

2.2 Constraints for the ESN
The substantial similarity in the network structure between the feedforward ELM and
the recurrent ESN suggests adapting the CELM approach to the recurrent ESN. But even
though the two approaches are similar in their structures, two major differences must
be tackled when transferring the concept of constraint learning to the ESN. On the one
hand, the time as an additional dimension needs to be taken into account and on the other
hand, the discreteness of the network needs to be considered. We will discuss different
constraint types and analyze which of them are suited to deal with these aspects of the
ESN.
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Continuous vs. Discrete Time
The CELM is defined by a continuous, differentiable network function y over a continuous
input domain u. This is the reason, why the constraints can be defined as linear combi-
nations of partial derivatives of y with respect to u as stated in Equation 1.3. In contrast,
the output function y of the ESN is defined as a discrete function over a discrete time
sequence t = 1, . . . , T. In order to discuss the definition of constraints for the ESN in the
following subsection, we make use of an alternative, continuous definition of y. While
the actual network equation can be regarded as a continuous function mathematically,
the discreteness of the system is caused by the reservoir state update. The reservoir state
is updated on each discrete network input (or after each discrete time step respectively)
and occurs in the network equation as x(t− 1). To circumvent this discrete state update
in a continuous version of y, we consider the continuous reservoir equation xcont and
the continuous ESN equation ycont as functions of the input u ∈ RNu and the internal
reservoir state xprev ∈ RNx . They are defined as

xcont(u, xprev) = (1− α)xprev + ασ

(
Win

[
1
u

]
+ Wxprev

)
, (2.3)

ycont(u, xprev) = Wout

 1
u

xcont(u, xprev)

 . (2.4)

Here, the discreteness is eliminated by regarding the reservoir state as a continuous
function argument instead of using it implicitly. The relation between the discrete and
the continuous network equation can be expressed as

y(t) = ycont(u(t), x(t− 1)),

where u(t) is the t-th input of the discrete time series and x(t− 1) the internal reservoir
state after t− 1 time steps.

Input-Dependent Constraint
Using this definition of a continuous learning function ycont as introduced in Equation 2.4,
the adaption of the CELM constraints defined in Equation 1.3 to the ESN case is straight-
forward: For a given input u and an internal reservoir state x, a constraint is defined as

L(u, x) =
Ny

∑
i=1

γiDmi
ycont

i (u, x)− c (2.5)

with c, γi, mi and Dmi defined as above. The partial derivative of ycont
i with respect to

umi
1
, . . . , umi

Mi
is obtained as

Dmi
ycont(u, xprev) = Wout

 0
Dmi

u
Dmi

xcont(u, xprev)

 , (2.6)
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where the derivatives of u and xcont result as

Dmi
u =


[
0 . . . 0 1 0 . . . 0

]T
if Mi = 1,[

0 . . . 0 0 0 . . . 0
]T

otherwise,

�mi
1-th position

(2.7)

and

Dmi
xcont(u, xprev) = α · σ(Mi)

(
Win

[
1

u(t)

]
+ Wxprev

)
·Win

·mi
1
· · ·Win

·mi
Mi

, (2.8)

as shown in Appendix A1. Here, σ(Mi) is the the Mi-th derivative of σ and Win
·j the j-th

column of Win.
Although the constraint definition in Equation 2.5 is mathematically completely valid

and can be implemented, some discrepancies arise on a logical level. These issues are
explained by a more detailed look at the constraint interpretation. In both the ELM and
the ESN case, constraints are defined about partial derivatives of the learning function
with respect to the input. The (partial) derivative of a function measures the sensitivity of
the function value with respect to the input value. Loosely speaking, a constraint specifies
how a small change in the input u affects the output y. For the ELMs case, where the
network output depends only on the current input, it makes perfect sense. But when
dealing with ESNs, the network output is computed not only from the current input, but
also from the internal reservoir state xprev, derived from the input history. With this in
mind, a constraint gets a different meaning: It specifies how a small change in the input
u affects the output y, if and only if the internal reservoir state (and so the input history)
stays the same. Consider the following example: Given two time series u(t) and u′(t) with
u(1) = u′(1), . . . , u(i) = u′(i), which means that both time series share the same input
history up to the i-th data point. A possible constraint supported by the framework could
look like this: If u(i + 1) is smaller than or equal to u′(i + 1) then y(i + 1) ≤ y′(i + 1).
Even if it works, it seems quite unlikely that this kind of constraint makes sense for any
time series machine learning task.

In order to get a more useful constraint framework, we introduce a new kind of constraint:
Discrete time-dependent constraints, discussed in the following section.

Discrete Time-Dependent Constraints via Continuous Network Function
As already mentioned above, a constraint as defined so far influences the effect of a small
change in the input values to the network output. But when dealing with RNNs, we also
deal with an additional dimension, the time. Thus, this small change in the input can not
only be interpreted as a small change in the input domain, but also as a small change
in time. As can be seen later, it even looks quite natural to define constraints regarding
the behavior of the network with respect to the time. Since ESNs are defined on time
series with a discrete time scale, we consider the network behavior between two or more
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consecutive time steps, denoted as ∆t. Since the term derivative is usually only defined for
continuous, differential functions, we have to introduce the term discrete derivative first.
By a discrete derivative of n-th order we mean the n-th order difference quotient (a more
detailed introduction to difference quotients is given in the following section). For now,
we consider only the first-order backward difference quotient for ∆t = 1 of the form

∆
∆t

f (t) = f (t)− f (t− 1). (2.9)

To express constraints on this discrete derivative while remaining as close as possible in
the context of the original constraint definition, the discrete derivative with respect to the
time can be approximated using the chain rule ( f ◦ g)′ = ( f ′ ◦ g) · g′ as

∆
∆t

y(t) =
∆
∆t

ycont(u(t), x(t− 1))

≈ ∂ycont

∂u
∆u(t)

∆t´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∗

+
∂ycont

∂x
∆x(t− 1)

∆t´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∗∗

=
Nu

∑
i=1

∂

∂ui
ycont(u(t), x(t− 1)) · (ui(t)− ui(t− ∆t)) +

Nx

∑
i=1

∂

∂xi
ycont(u(t), x(t− 1)) · (xi(t− 1)− xi(t− 1− ∆t)),

(2.10)

where ∂ycont/∂u is the element-wise partial derivative with respect to each element of u. The
constraint definition adapted in Equation 2.5 in its original form cannot represent this
expression. The first part Equation 2.10∗ is a linear combination of partial derivatives of
y with respect to u with ∆u(t)/∆t as coefficients and thus fits in the constraint framework
presented above. But the framework does not allow to define expressions regarding
derivatives with respect to the reservoir state x as required in Equation 2.10∗∗. Here, we
need to extend the framework accordingly by adding a term taking the x-derivatives into
account:

L(u, x) =
Ny

∑
i=1

γiDmi

u ycont
i (u, x) + γ̂iDm̂i

x ycont
i (u, x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
extension

− c, (2.11)

with coefficients γi, γ̂i ∈ R, a bound c ∈ R and mi = [mi
1 . . . mi

Mi ] ∈ {1, . . . , Nu}Mi and
m̂i = [m̂i

1 . . . m̂i
M̂i ] ∈ {1, . . . , Nx}M̂i . Dmi

u and Dm̂i

x are the component-wise differential
operator as defined above, but with the explicit distinction of the vector to which mi and
m̂i, respectively, refer. The partial derivative of ycont with respect to x is obtained similar
to the one with respect to u as given in Equation 2.6 and is shown in Appendix A1.

Using Equation 2.11, we can finally approximate derivatives of the ESN output functions
with respect to the time t. But having a look at Equation 2.10, one can see that it is still an
approximation caused by the continuous partial derivatives of the continuous function
ycont used to calculate the discrete derivative of the discrete function y. The problem
here is that we assume that the derivative of ycont at (u(t), x(t)) is similar to the discrete
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Figure 2.2: (a) After an initial washout time, the predicted signal y matches the target signal ytarget

quite well. (b) Nevertheless, the approximated discrete derivative deviates strongly
from the “real” discrete derivative at some points (e.g., t = 60), while it approximates
the discrete derivative well at other points (e.g., t = 90).

derivative of y at time step t. That this assumption does not hold in general and may yield
completely wrong results in the worst case could be reproduced in the following example.

Consider the simple learning task of passing through the input signal with one time
step delay. The input signal is generated from a sine wave as

u(t) = sin
(

t
10

)
(2.12)

for t = 1, 2, 3, . . . and the target signal is obtained as

ytarget(t) = u(t− 1). (2.13)

We create an ESN with a very small reservoir of only ten reservoir neurons and train it with
the given training data. Without embedding any constraint into the learning process, we
analyze the approximation of the first-order discrete derivative of the learned function
as described in Equation 2.10 (in the following called approximation). We compare this
approximation to the first-order difference quotient of y

∆y
∆t

= y(t)− y(t− 1), (2.14)

which matches the definition of the discrete derivative and thus is a good baseline model
for comparison. The result is visualized in Figure 2.2b. Both the discrete derivative of the
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δ = 0 δ = 1

∆t

∆
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δ = 0 δ = 1

∆t

∆
y

(approx.)

∆
y

y(90)

y(89)

(b)

Figure 2.3: (a) ycont in the direction (u(t)− u(t−1), x(t−1)− x(t−2)) ( ) behaves non-linear
between t = 60 and t = 61. (b) Between t = 90 and t = 91, it is almost linear. Since the
derivation of ycont at t = 60 or t = 90 respectively is used to approximate the discrete
derivative of y, the approximation works well only if ycont is nearly linear.

ESN output ∆y/∆t and the discrete derivative of the target signal ∆ytarget/∆t are very similar.
On the contrary, the approximation deviates strongly from these at some points. To better
understand the cause, we consider the behavior at time steps t = 60, where the result differs
strongly from the expected one and t = 90, where the result is very similar to the expected
one. In the following, we discuss the behavior using the continuous ESN equation ycont.
The “real” discrete derivative is the difference between y(t) = ycont(u(t), x(t− 1)) and
y(t− 1) = ycont(u(t− 1), x(t− 2)). The approximated one is computed by generalizing
the directional partial derivative of ycont(u(t), x(t− 1)) along the vector[

u(t)−u(t−1)
x(t−1)−x(t−2)

]
(2.15)

to the whole interval between these time steps. This is visualized in Figure 2.3, where the
directional output function

ycont((1−δ)u(t) + δu(t−1), (1−δ)x(t−1) + δx(t−2)) (2.16)

is plotted with respect to δ. For δ = 0, the function value equals y(t− 1), for δ = 1 it
equals y(t). In between, the values of u and x are interpolated linearly. Furthermore, the
slope at δ = 1 equals the directional derivative used in the approximation. One can see
that this continuous output function ycont behaves non-linear between t = 59 and t = 60,
but almost linear between t = 89 and t = 90. As a result, the approximation ∆y/∆t (approx.)
is very similar to the actual ∆y/∆t in the latter case, but very different in the first one. As a
result, the approximation works well only in the latter case.
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This example is constructed so that the issue becomes visible in the best possible
manner. On the one hand, the reservoir size is selected very small and on the other hand,
the hyperparameters are not optimized in the sense of a validation error, but are selected
in the sense of a good exposition of the issue. Nevertheless, the small reservoir and the
hyperparameter selection are sufficient to yield a small test error, as visualized in Figure
2.2a. But even though this approximation seems to fail only in particular cases, the example
shows that this approach is not reliable to embed time-dependent constraints to the ESN
at all. Thus, we introduce another kind of constraint that is able to describe difference
quotients of the output function y directly and therefore, the approximation used here
can be omitted.

Discrete Time-Dependent Constraints via Discrete Network Function
The difference quotient of a function f (x) describes the ratio of the change of the function
value f to a change of of the argument x, provided that f depends on x. In numerical
mathematics, the difference quotient is used to approximate the derivative of differentiable
functions and can also be used to define discrete derivatives on discrete functions. The
difference quotient can be defined in three different ways:

Forward difference quotient

∆ f
∆x

=
f (x + ∆x)− f (x)

∆x
(2.17)

Backward difference quotient

∆ f
∆x

=
f (x)− f (x− ∆x)

∆x
(2.18)

Central difference quotient

∆ f
∆x

=
f (x + ∆x)− f (x− ∆x)

2∆x
(2.19)

While this standard (first-order) difference quotient approximates only the first-order
derivative of a function, there exist higher-order (central) difference quotients, approximat-
ing higher-order derivatives. For example, the (central) difference quotient of second-order
is defined as

∆2 f
∆x2 =

f (x + ∆x)− 2 f (x) + f (x− ∆x)
∆x2 . (2.20)

The goal is to define a framework, which allows defining constraints regarding difference
quotients of the ESN output of arbitrary order with respect to the time. Applied to the
ESN, the function f is one network output function yi and the independent variable x
is the discrete time t. Regarding the structure of a difference quotient, it can already be
seen in the examples above that they are built as linear combinations of yi at different
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time steps. For technical simplicity, we shift all difference quotients by so many time steps
that we have to deal only with backward difference quotients. For example, a constraint
at time step t, which involves a central second-order difference quotient, is shifted by ∆t
time steps. The resulting constraint is defined at time step t + ∆t and involves a difference
quotient of the form

yi(t)− 2yi(t− ∆t) + yi(t− 2∆t)
2∆t

. (2.21)

Both expressions are equivalent. This provides us the same expression power, but we have
to deal with the network history only and no longer with values beyond time step t. With
this in mind, we define the new constraints with respect to the discrete time t as

L(t) =
Ny

∑
i=1

H

∑
h=0

γih yi(t− h)− c (2.22)

with coefficients γih ∈ R, a bound c ∈ R and H ∈ N ∪ {0} the number of time steps
accessed backward. This new constraint definition allows us to define constraints involving
the difference quotients introduced above and all higher-order difference quotients as
well. Thus, this kind of constraint can influence the behavior of the ESN with respect to
the discrete time. Up to this point, we just discussed the constraints’ general structure.
The following section describes how the actual embedding of the constraints into the ESN
works.

2.3 Embedding Constraints into the Network
The objective of the training process of a recurrent network is usually to minimize an error
between the training target output ytarget and the actual network output y. Considering the
CESN, we furthermore have to regard the special case that we need to embed predefined
constraints into the network. Figure 2.4 visualizes the idea behind the training process.
First, the training task can be considered as a two-dimensional Linear Least Squares (LLS)
regression problem, which in turn can be reduced to a one-dimensional one. At this
point, the constraints come into the picture by considering the one-dimensional LLS
as a Constrained Linear Least Squares regression problem. This problem again can be
rephrased as a non-linear optimization problem and in the end solved using a suitable
solver. In the following, these single reduction steps are explained mathematically without
going into further details about the actual algorithmic implementation, which is discussed
separately in Chapter 3.

Two-Dimensional Linear Least Squares

For simplicity, we assume in the following that the training data consists of exactly one
training input time series u(1), . . . , u(T) with T ∈N time steps and one corresponding
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ESN training 2D Linear
Least Squares

Constrained
Linear Least
Squares

Quadratic
Program

Support constraints

Figure 2.4: The training of the ESN in the sense of minimizing the training error is equivalent to
solving a two-dimensional linear least squares problem, which in turn can be reduced
to a linear least squares problem supporting constraints. This can be rephrased as a
quadratic program and in the end solved by a suitable solver.

target output time series ytarget(1), . . . , ytarget(T). Furthermore, we substitute

x̃(t) :=

 1
u(t)
x(t)

 ∈ RNx̃ , (2.23)

where Nx̃ = Nu + Nx + 1. With this, the reservoir read-out equation from Equation 2.2
can be expressed as

y(t) = Woutx̃(t). (2.24)

The training objective of the ESN is to minimize the error ε between the training target
output signal ytarget and the actual network output y, using a suitable error metric. In our
case, this error metric is the Root Mean Square Error (RMSE), defined as

εRMSE =
1

Ny

Ny

∑
i=1

1
T

T

∑
t=1

(
yi(t)− ytarget

i (t)
)2

=
1

Ny

Ny

∑
i=1

1
T

T

∑
t=1

(
Wout

i x̃(t)− ytarget
i (t)

)2
.

(2.25)

After initializing the reservoir with randomly selected and fixed input weights Win and
reservoir weights W and selecting suitable hyperparameters, the only parameters being
optimized during the training process are the read-out weights Wout. Collecting x̃(t)
and ytarget(t) over all training time steps in matrices X̃ ∈ RNx̃×T and Ytarget ∈ RNy×T

respectively, the definition of the RMSE can be squashed to

εRMSE =
∣∣∣∣∣∣X̃T(Wout)T − (Ytarget)T

∣∣∣∣∣∣2
F

, (2.26)

where || · ||F is the Frobenius norm, which is the matrix counterpart to the euclidean vector
norm and defined as the square root of the sum of the squared matrix elements. Now,
minimizing εRMSE with respect to Wout is equivalent to solving the two-dimensional LLS

Wout = arg min
Wout

∣∣∣∣∣∣X̃T(Wout)T − (Ytarget)T
∣∣∣∣∣∣2

F
. (2.27)
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Adding a regularization term may help keep the weights in Wout small and lead to more
stable solutions. This so-called Ridge Regression extends the LLS to

Wout = arg min
Wout

∣∣∣∣∣∣X̃T(Wout)T − (Ytarget)T
∣∣∣∣∣∣2

F
+ β

∣∣∣∣∣∣(Wout)T
∣∣∣∣∣∣2

F
(2.28)

with the regularization parameter β ∈ R. The larger β is selected, the more large output
weights are penalized. A solution for the ridge regression problem in Equation 2.28 is
obtained by solving

Wout = YtargetX̃T
(

X̃X̃T + βINx̃

)−1
(2.29)

with the identity matrix INx̃ ∈ RNx̃×Nx̃ and the multiplicative matrix inverse (·)−1 [25].
However, this solution is not able to learn constraints during the training process. Never-
theless, it is much faster than the constrained linear least squares solution presented in
the next section and should be preferred whenever no constraints are involved.

Constrained Linear Least Squares
In order to embed constraints as defined in Equation 2.22 into the ESN, we regard the
training process as a constrained optimization problem, which is solving a linear least
squares problem while satisfying a set of predefined constraints. The so-called Constrained
Linear Least Squares (CLLS) problem is formulated generically as

minimize
x∈Rn

||Ax− b||22
subject to Gx � h

(2.30)

for a design matrix A ∈ Rm×n, observations b ∈ Rm and constraints defined by G ∈ Rp×n

and h ∈ Rp, where the � operator is defined as component-wise inequality between both
operands1. Since the optimized variable x in the CLLS is one-dimensional, we show first,
that the two-dimensional ridge regression problem can be reduced to a one dimensional
LLS problem as required in Equation 2.30 and second that the constraints defined above
fit into the resulting CLLS problem.

Reduction of Two-Dimensional Ridge Regression to Linear Least Squares

The two-dimensional ridge regression problem defined in Equation 2.28 can be reduced
to a one-dimensional linear least squares problem as described in [33] in four steps:

1 x is a common variable name in the formulation of a generic optimization problem and refers not to the
reservoir output in this particular case, as in the rest of this work.
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Rephrase the design matrix X̃ ∈ RNx̃×T to a block-diagonal matrix as

ˆ̃X := INy ⊗ X̃T =


X̃T 0 0 · · · 0
0 X̃T 0 · · · 0
0 0 X̃T · · · 0
...

...
... . . . ...

0 0 0 · · · X̃T

 ∈ R(Ny·T)×(Ny·Nx̃), (2.31)

where ⊗ denotes the Kronecker product.

Flatten the two-dimensional variable Wout to

Ŵout :=


(Wout

1 )T

(Wout
2 )T

...
(Wout

Nx̃
)T

 ∈ RNy·Nx̃ (2.32)

Flatten the observation matrix Ytarget ∈ RNy×T to

Ŷtarget :=


(Ytarget

1 )T

(Ytarget
2 )T

...
(Ytarget

Ny
)T

 ∈ RNy·T (2.33)

Construct a one-dimensional LLS problem that takes the regularization term into
account as

minimize
Ŵout

∣∣∣∣∣
∣∣∣∣∣
[

ˆ̃X√
β · INy·Nx̃

]
· Ŵout −

[
Ŷtarget

0Ny·Nx̃

]∣∣∣∣∣
∣∣∣∣∣
2

2

, (2.34)

where 0Ny·Nx̃ is the zero vector of size Ny · Nx̃.

This resulting one-dimensional LLS with a one-dimensional optimization variable Ŵout

is equivalent to the two-dimensional one. The actual Wout is obtained by reshaping Ŵout

back to the initial shape of Wout according to the order in which Ŵout was constructed
from Wout.

Constraint Reformulation

The constraints in the CLLS are defined as Gx � h, where each row Gix ≤ hi represents
one constraint. Applied to the currently defined LLS, a constraint is defined as

GiŴout ≤ hi ⇔ Gi ·


(Wout

1 )T

(Wout
2 )T

...
(Wout

Nx̃
)T

 ≤ hi . (2.35)
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In order to fit this formulation, the constraints defined in Equation 2.22 must be reformu-
lated so that the optimization variable Wout is separated from the rest of the constraint
expression. Due to the linearity of the read-out layer and the fact that the read-out can be
completely decoupled from the reservoir, such a reformulation can be achieved as

Ny

∑
i=1

H

∑
h=0

γih yi(t− h) ≤ c

⇔
Ny

∑
i=1

H

∑
h=0

γih Wout
i x̃(t− h) ≤ c

⇔
Ny

∑
i=1

Wout
i ·

(
H

∑
h=0

γih x̃(t− h)

)
≤ c

⇔
Ny

∑
i=1

(
H

∑
h=0

γih x̃(t− h)

)T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ηi(t)

· (Wout
i )T ≤ c.

(2.36)

This reformulated constraint can be embedded into the CLLS straightforwardly: Assuming
a constraint shall be satisfied for all time steps t in the range [t1, t2] with 0 ≤ t1 ≤ t2 ≤ T.
We add the following rows to the CLLS:

η1(t1) η2(t1) · · · ηNy
(t1)

η1(t1 + 1) η2(t1 + 1) · · · ηNy
(t1 + 1)

...
... . . . ...

η1(t2 − 1) η2(t2 − 1) · · · ηNy
(t2 − 1)

η1(t2) η2(t2) · · · ηNy
(t2)


· Ŵout ≤



c
c
...
c
c


. (2.37)

Since Wout is only required to compute the final output y, but not to run the reservoir
internally, all x̃(t) can be computed in advance without knowing the final read-out weights
Wout. Figure 2.5 illustrates how unfolding in time is used to unfold the reservoir up to H
time steps backward to memorize and access the reservoir history easily. Furthermore,
the figure visualizes the decoupling of the read-out layer from the rest of the network and
shows why Wout is not required to compute the reservoir outputs. Hence, all ηi, and thus
all constraints can be computed in advance before the actual optimization of Wout begins.

Quadratic Programming
Quadratic programming is a well-researched field of mathematical optimization. As a
type of non-linear optimization, quadratic programming deals with solving mathematical
optimization problems involving quadratic objective functions under linear constraints.
Formally, such an optimization problem, a so-called Quadratic Program (QP), is formulated
as

minimize
x∈Rn

1
2
xTQx+ cTx

subject to Gx � h
(2.38)
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Figure 2.5: The input and reservoir layer are fully decoupled from the read-out layer. By using
Unfolding in time, the reservoir history can be made accessible explicitly.

with c ∈ Rn, a symmetric matrix Q ∈ Rn×n, G ∈ Rm×n and h ∈ Rm.2

One application of quadratic programming is the CLLS (Equation 2.30) which can be
formulated as a specialization of a QP by setting

Q := ATA and c := −2bTA (2.39)

as shown in Appendix A2. The constraints are defined equally as Gx � h in both problem
formulations. With this in mind, we can rephrase the ESN training problem such that it
can be solved as a QP using a suitable QP solver. For the sake of simplicity, we show only
the reduction from the generic CLLS formulation to the generic QP formulation and do
not transfer it to the ESN training problem.

By default, a constraint is defined in the so-called standard form Gix ≤ hi. Other
constraint types such as equality constraints or constraints involving absolute values, can
easily be reduced to this standard form as listed in Table 2.1. In the following chapters, we
use these reductions to use a broader range of constraint formulations.

Constraint Standard form

Gix ≥ hi −Gix ≤ −hi

Gix = hi
Gix ≤ hi
−Gix ≤ −hi

|Gix| ≤ hi
Gix ≤ hi
−Gix ≤ hi

Table 2.1: Different types of constraints can be converted to constraints in standard form.

2 x is a common variable name in the formulation of a generic optimization problem and refers not to the
reservoir output in this particular case, as in the rest of this work.
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While the theoretical background of the CESN approach is elaborated in the previous
chapter, the actual training algorithm, including two illustrative examples, is discussed in
the following.

3.1 Algorithmic Implementation
Reservoir Initialization and Hyperparameters
The number of different hyperparameters influencing the performance of ESNs is, com-
pared to other machine learning models, relatively large. Moreover, reservoir computing
models are more sensitive to changes in the hyperparameters than other RNNs [2]. Thus,
an extensive hyperparameter optimization is often essential when dealing with ESNs.

In the beginning of the training process, the ESN reservoir is initialized with input
weights Win, recurrent reservoir weights W and an initial reservoir state x(0). The reservoir
state is initialized with a zero vector x(0) = 0Nx . The weights Win are sampled randomly
from a uniform distribution [−a, a] for an input scaling parameter a ∈ R, which specifies
the impact of the input on the reservoir update. The scale of the distribution from which
the internal reservoir weights W are sampled is defined by the spectral radius parameter ρ.
It specifies the spectral radius of W, which is the largest absolute value of the eigenvalues
of W. The spectral radius of W influences how fast an input is vanished out of the reservoir
state over time. For tasks that require a longer memory of the input, a greater spectral
radius ρ should be selected. To obtain a weight matrix with a predefined spectral radius, W
is first sampled randomly from the uniform distribution [0, 1], then the current spectral
radius is computed as

ρcurrent(W) = max {|λ1|, . . . , |λNx |} , (3.1)

where λ1, . . . , λNx are the eigenvalues of W and finally W is scaled to match the target
spectral radius:

Wnew = ρ · W
ρcurrent(W)

. (3.2)

While several works address the question of what requirements the spectral radius must
meet to deliver stable ESNs [3, 9, 17, 20, 48], it is often sufficient to find a well working
spectral radius by a suitable hyperparameter optimization technique in practice. The
sparsity of W defines the number of weights of size 0 in W, which specifies the number
of connections inside the reservoir. While the original ESN was proposed with a sparsely
connected reservoir, it turned out that the sparsity is only a minor factor of hyperparameter
optimization [25]. The leaking rate α is already known from the reservoir update definition
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(Equation 2.1) and influences the temporal characteristics of the reservoir. Finally, the
reservoir size is an important parameter, which specifies the capacity of the reservoir.
It should be selected larger for more challenging tasks and tasks where a lot of input
information needs to be remembered over time [25]. While all hyperparameters mentioned
up to this point refer to the reservoir initialization, only one hyperparameter influences
the actual network training, namely the regularization parameter β of the ridge regression,
introduced in Equation 2.28. A detailed overview of all ESN hyperparameters is given
in [25].

Training Data and Constraint Data
In general, a CESN is trained on a dataset of Ntr training samples{(

u1(t), ytarget
1 (t)

)
. . . ,

(
uNtr(t), ytarget

Ntr
(t)
)}

,

where each sample consists of an input time series ui(t) and a corresponding target time
series ytarget

i (t). Moreover, another set of Nco input time series {uco
1 (t), . . . , uco

Nco
(t)} is

needed, on which the constraints are learned. Note that no further target output time
series are needed here since only the input and the reservoir output, which is computed
from the input, are required to embed the constraints to the CESN. This dataset for the
constraint embedding does not necessarily have to be disjoint from the training dataset,
but may also be a subset or a superset of the input time series of the training samples.

For simplicity, we discard the concept of multiple time series samples in the following
section and assume that we have to deal with single, large time series only. Thus, the
CESN is trained on one input time series u(1), . . . , u(Ttr) and associated target outputs
ytarget(1), . . . , ytarget(Ttr) and the constraints are learned on another input time series
uco(1), . . . , uco(Tco). In practice, training data consisting of multiple samples of time
series can easily be converted to one large time series by joining them together. Only care
must be taken to reset the internal reservoir state whenever a new sample begins.

Network Training
The training procedure of the CESN is summarized in Algorithm 1. The procedure takes
the training and the constraint input signal, the target output signal and the constraints as
input and computes the optimized read-out weights Wout. Here, the matrices U ∈ RTtr×Nu

and Uco ∈ RTco×Nu collect the training input signal and the constraint input signal,
respectively, over all time steps. The same holds for Ytarget ∈ RTtr×Ny . The constraints
are defined as sets C1, . . . , CTco , where Ct contains all constraints corresponding to time
step t in the constraint input signal. Here, a constraint is defined by the bound c and all
coefficients γih as introduced in Equation 2.22. A constraint can, of course, also be defined
for multiple time steps. In that case, it is present in multiple constraint sets.

Assume that the CESN is already initialized as described above. In the beginning, all
training inputs are forwarded through the reservoir successively, according to Equation 2.1.
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The resulting reservoir outputs are collected in the matrix X ∈ RTtr×Nx (line 1–3). Once
finished, the linear least squares problem defined in Equation 2.28 is constructed, involving
U, Ytarget and the reservoir outputs X (line 4). Since no constraints are applied yet, the
linear least squares is solved using the computational cheap ridge regression and an initial
Wout is obtained (line 7). After resetting the reservoir state (line 8), the constraint input
time series is forwarded through the network using the currently computed Wout. This
delivers network outputs Yco ∈ RTco×Ny (line 12). In order to provide the reservoir history
as required for the constraint embedding, the reservoir states are collected here as well
(line 13). Subsequently, all constraints defined for the current time step are evaluated with
the predicted outputs. Since the constraints are constructed so that they base on the output
history only, all necessary data is already available. If a constraint is violated, the collected
reservoir history Xco and the input history Uco are used to construct the QP constraint as
introduced in Equation 2.36, which is added to the set of constraints that shall be applied
in the next iteration (line 14-17). This process is repeated, but this time the LLS problem is
transformed to a QP as described in Section 2.3 and solved using a QP solver. When all
constraints are satisfied, the procedure terminates and the final Wout is returned. Instead
of adding constraints iteratively and solving the QP several times, adding all constraints
to the QP directly and solving the problem in one pass is also possible. This can save
time, especially if it is known that a large percentage of the defined constraints are violated
during the training process. However, this one-shot training may require much more
memory (see Appendix A3).

Initial Reservoir State Washout The training algorithm as introduced above uses the entire
training time series, beginning with time step 1. But at the very beginning, the initial
reservoir state is initialized artificially, which is in our case with 0Nx . This initial reservoir
state influences the first reservoir outputs and may cause an undesired behavior of the
network in the beginning. Depending on the reservoir parameters and the input data,
it can take up to several hundred time steps until this initial reservoir state has mostly
vanished and the reservoir state is influenced only by the input history. For this reason,
usually, the first t0 ∈N time steps of the time series are forwarded through the reservoir,
but not used for the optimization of Wout and the embedding of constraints. This t0 is
called washout time or transient time. Concerning the training algorithm, this is observed in
line 4, where the first t0 time steps are discarded when constructing the LLS, and in lines
14-17, where the constraints are evaluated and applied only for time steps after t0.

Some remarks to the practical implementation, including the tackling of numerical
issues of the QP solver and the efficient utilization of memory capacity, are given in
Appendix A3.



24 3 Practical Realization

Data Input signals U and Uco, target signal Ytarget, constraint sets C1, . . . , CTtr

Result Read-out weights Wout

1: Xtr ← Empty array of size Ttr × Nx

2: for t← 1, . . . , Ttr do
3: Xtr

t ← forwardReservoir(Ut)

4: Construct LLS problem from (U, X, Ytarget)

5: Capplied ← {}
6: repeat
7: Wout ← Solve LLS s.t. Capplied
8: Reset reservoir state
9: Yco ← Empty array of size Tco × Ny

10: Xco ← Empty array of size Tco × Nx

11: for t← 1 . . . , Tco do
12: Yco

t ← Predict(Wout, Uco
t )

13: Xco
t ← Current reservoir state

14: for all c in Ct do
15: if Yco violates c then
16: cQP ← construct QP constraint from (c, Xco, Uco)

17: Capplied = Capplied ∪ {cQP}
18: until all constraints satsified
19: return Wout

Algorithm 1: CESN Training Procedure

3.2 Illustrative Example: Frequency-varying Sine Wave
Consider the following learning task: Given a discrete input signal, generated from a sine
wave with a fixed amplitude but a varying frequency, an ESN shall be trained to predict the
frequency of the sine wave (see Figure 3.1). The input signal u is defined as

u(t) = sin

(
t

∑
i=1

δ(i)

)
for t = 1, 2, 3, . . . , (3.3)

where δ(t) describes the sine wave frequency at time step t. The origin of this definition
can easily be explained with an alternative interpretation of the same task: Consider a
point that circulates counter-clockwise on a unit circle. The point moves with a variable
velocity, which means that on each time step t, the point moves by an angle of δ(t) on the
circle (see Figure 3.2a). The total angle δcum, the point has moved on the circle so far at a
specific time step is the sum of all previously moved angles and the current one:

δcum(t) =
t

∑
i=1

δ(i). (3.4)
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Figure 3.1: A sine wave with a variable frequency.
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Figure 3.2: (a) Considering a point circulating on a unit circle with a variable velocity of δ(t), its
y coordinate at time step t is defined as sin

(
∑t

i=1 δ(i)
)
. (b) The point on a unit circle

specified by the angle δ is defined as x = cos(δ) and y = sin(δ)).
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The coordinates of the point are defined by the sine and the cosine of this total angle
δcum(t), or more precisely, by the sine and the cosine of δcum(t)mod 2π (See Figure 3.2b).
Since the sine and the cosine function have a periodicity of 2π, the coordinates of the
point at time step t are obtained as

x = cos (δcum(t)) and y = sin (δcum(t)) . (3.5)

Using this formulation of the data, the learning task can also be reformulated: Predict the
current velocity of the point on the circle, which is the current δ(t), given the y coordinate
of the point over time. This task can be solved easily by considering the last few time
steps. To make the task harder, a delay of Tdelay time steps between the input and the target
signal is created. Hence, the ESN shall not predict the current velocity of the point, but the
velocity Tdelay time steps ago, resulting in a target signal of

ytarget(t) = δ(t− Tdelay). (3.6)

In the following, two examples based on this learning task are presented. The target
output signal ytarget is generated from a cubic spline using randomly sampled points from a
uniform distribution in the range (5/1000, 5/10). An additional validation procedure ensures
that all interpolated data points are within this range. The input signal u is computed from
the given target output signal as defined in Equation 3.3. Two different types of constraints
are presented and in both examples, additional prior knowledge in the form of constraints
is used to improve the performance of the estimator.

Example 1: Difference Quotient Constraints
In this example, the input-output delay is set to Tdelay = 50. Thus, the ESN needs to
remember information about the previous 50 time steps, which can be a quite challenging
task. With an available training dataset size of only 900 time steps, the task gets even more
difficult. We use detailed information about the smoothness and curvature behavior of
the output signal, which is known from the way, the output signal is constructed from
the spline. This prior knowledge can be expressed by the first, second and third order
difference quotient and is embedded in form of constraints to the CESN, which are defined
as

|DQ1(y(t))| ≤ 1.1 ·DQmax
1

|DQ2(y(t))| ≤ 1.1 ·DQmax
2

|DQ3(y(t))| ≤ 1.5 ·DQmax
3 ,

(3.7)

where DQi is the i-th order difference quotient and DQmax
i is an absolute upper bound

to the i-th order difference quotient of the output signal. The total signal has a length of
6000 time steps. The first 1000 time steps are used for training, from which the first 100
time steps serve as initial transients. The constraints are applied to the first 4000 time
steps, except the transient ones. Note here, that even if we use an input of 4000 time steps
during the training process, the size of the available target outputs is limited to the first
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Approach
Abs. Test Error

(
·10−3) Rel. Test Error

Best Mean Best Mean

Baseline 144.6 144.6± 0.0 100.0% 100.0%
ESN 31.7 42.1± 6.8 21.9% 29.1%
ESN + postproc. 27.0 37.4± 4.5 18.7% 25.9%
CESN 11.2 16.5± 7.2 7.7% 11.4%

Table 3.1: Absolute and relative errors of example 1. The relative errors are comparisons to the
baseline error.

1000. The idea here bases on the assumption that it is easy to generate new input data,
but much more expensive to acquire training target output data. The time steps 4001 to
5000 are used as validation data for the hyperparameter optimization and the final test
error is evaluated on the last 1000 time steps. The internal reservoir state is not reset
between the different steps, so an initial washout is necessary only at the very beginning.
The performance of the CESN is compared to an ESN trained on the same data but without
constraints. Moreover, we apply a postprocessing step to the ESN output. The output is
modified so that all constraints are satisfied and deviates as little as possible from the
original ESN output (in sense of the RMSE). This postprocessing task is also solved with
the use of a QP solver. The hyperparameters of both the CESN and the ESN are selected
by performing a grid search on the fixed parameter sets listed in Appendix A4.1. In order
to deal with the randomness of the reservoir initialization, the experiment, including the
hyperparameter optimization, was repeated for 30 different network initializations.

The best and mean results of each approach are listed in Table 3.1. Here, the relative
errors are computed by comparing the absolute errors to a baseline error. The baseline
error is obtained by using the average of all training outputs as the predicted output at
every time step (and thus a constant output signal). From the results in the table can be
seen that the postprocessing step improves the ESN results clearly, but in both the best and
the mean result, the CESN performs significantly better than the both ESN approaches.
The estimated outputs of all three approaches are plotted in Figure 3.3 for the entire 6000
time steps. Here, it can be seen that the ESN is not able to predict good results at lower
frequencies. One reason for this could be that hardly any small frequencies are given in
the training data and the training signal is just not large enough to learn and generalize
the target signal well. Just for comparison, increasing the number of training time steps
to 4000, the ESN delivers very good results, too. This shows that the task is generally
well solvable, but the small amount of available training data is the problem. In this case,
the constraints help to tackle this issue and provide the missing information, usually
derived from the higher amount of training data. That the outputs of the CESN are close
to the target outputs even for the time steps 4000 to 6000, where no more constraints are
embedded, indicates that the constraints generalize well to new data.
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Figure 3.3: While the ESN without constraints fails to predict the sine wave frequency especially
for small frequencies, the CESN delivers much better results. This holds even for the
time steps, where no constraints are applied (time steps 4000− 6000), which indicates
that the constraints are generalized well. Applying a postprocessing optimization to the
standard ESN results can force the constraints and improve the results. Nevertheless
they are clearly worse than the CESN results.
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Figure 3.4: Even if the ground-truth training targets (red) repeat with a periodicity of P = 300, this
does not hold for the input signal u. The noise, added to the ground-truth target signal
removes the periodicity in the training targets ytarget, too.

Example 2: Periodicity Constraints

While we use constraints in the first example in order to bypass the problem of too few
training data, this example uses constraints to tackle the issue of very noisy training data.
We select Tdelay = 30. The frequency signal is generated to repeat every P = 300 time steps.
The sine wave signal is then constructed from the frequency signal. Note that even if the
frequency signal repeats with a periodicity of P, this does not hold in general for the sine
wave signal (see Figure 3.4). This is caused by how the sine wave is constructed from the
frequency signal as defined in Equation 3.3. Afterward, intense Gaussian noise with a mean
µ = 0 and a standard deviation σ = 0.35 is added to the frequency signal. The periodicity
in the output signal is used as prior knowledge and constraints are defined as

|y(t)− y(t− P)| ≤ 0.01. (3.8)

As in the first example, one long signal of 4000 time steps is divided into disjoint parts:
The first 3P = 900 time steps are used for training, from which the first 100 time steps are
discarded as initial transients. The following 1100 time steps are used to apply constraints
and the last 2000 time steps are equally divided for the validation of the hyperparameters
and final evaluation (testing). Again, the output signal between the times steps 901 and
2000 is not required since only the input signal is used for the constraint embedding.
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This time, we compare two different CESN approaches: One CESN is trained, where the
constraints are applied only to the training data. In a second one, they are applied to the
training data and additionally to the following 1100 time steps. In the first approach, the
time steps 901 to 1100 are not used at all. Thus, we can analyze the impact of the size of the
constraint dataset on the performance. Both CESN approaches are compared to a standard
ESN without constraints. Furthermore, we train a second standard ESN on preprocessed
training data, which take the prior knowledge into account: The 900 available training
outputs are averaged every P time steps, resulting in one mean period of P time steps,
where each one is a mean of three values. This mean period is repeated three times to
cover all training input time steps. Formally, we obtain preprocessed training targets

ytarget
prepoc(t) = 1

3 (y
target(t) + ytarget(t + P) + ytarget(t + 2P)) (3.9)

for t = 1, . . . , P and ytarget
prepoc(t) = ytarget

prepoc((t− 1) mod P + 1) for t = P + 1, . . . , 3P. In a
third standard ESN, we repeat this mean period not only for all training input time steps,
but for the first 2000 input time steps and the ESN is trained on these 2000 artificially
created training time steps. As in the second CESN approach, no further training outputs
are required in this case since we use the mean period computed from the 900 available
training outputs. Thus, this third ESN approach can be considered as the counterpart to
the second CESN approach. As in the first example, the hyperparameters of all five ESNs
are optimized independently on the grid search parameters listed in Appendix A4.1. The
experiment is repeated for 30 different network initializations.

The best and mean results are listed in Table 3.2, where the baseline error and the relative
errors are defined as above. The error is evaluated not on the noisy output data, but on
the original ground-truth signal without noise. The standard ESN without preprocessing
and constraints performs just slightly better than the baseline model, which most likely is
caused by the intense noise on the training data. The approaches with data preprocessing
yield smaller test errors, especially if the mean is artificially extended to the first 2000 time
steps. Nevertheless, both CESN approaches outperform all three standard ESN approaches
significantly and deliver comparably best test errors. Concerning the mean test error, the
CESN with an extended constraint range performs considerably better as if the constraints
are applied to the training data only. In Figure 3.5, the predicted outputs of all five
approaches (using the best performing ESN each) are plotted for the training (time steps 1
to 900) and the test data (time steps 3001 to 4000). It can be seen that both CESN approaches
deliver much smoother results that are close to the ground-truth signal.



3.2 Illustrative Example: Frequency-varying Sine Wave 31

Approach
Abs. Test Error

(
·10−3) Rel. Test Error

Best Mean Best Mean

Baseline 97.5 97.5± 0.0 100.0% 100.0%
ESN 78.8 95.3± 8.3 80.6% 97.7%
ESN (mean) 66.7 84.8± 8.5 68.4% 87.0%
ESN (mean extended) 48.7 58.9± 4.4 49.9% 60.4%
CESN (training data only) 28.9 36.4± 5.1 29.7% 37.3%
CESN 26.1 28.7± 1.4 26.8% 29.4%

Table 3.2: Absolute and relative errors of example 2. The relative errors are computed as a compari-
son to the baseline error.
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Figure 3.5: The network outputs of the different approaches for the training (0− 900) and test
inputs (3000− 4000). While a periodicity constraint is embedded on the training data
in the CESN approaches, it is not on the test data.



4 Application: Satellite Image
Forecasting

This chapter considers a practical application of the introduced CESN: The forecasting of
satellite image data. Given a series of satellite images, each of which covering the same
area on Earth but captured at a different time, the task is to forecast the image at the next
time step. The Area of Interest (AOI) considered in this chapter is the Harz highland area
in northern Germany and in particular, we have a closer look at woodland areas.

4.1 Planet Labs Inc.
Founded in 2009 by ex-NASA scientists, Planet Labs Inc. (in the following called Planet) is
a private Earth-imaging company.1 With their goal of “imag[ing] the entire Earth every
day and mak[ing] global change visible, accessible, and actionable”1, they take a completely
different approach than other companies in this sector. Instead of using a few satellites
to perform specific and scheduled orders, as of today, Planet’s PlanetScope satellite con-
stellation consists of approximately 120 small satellites (10 cm× 10 cm× 30 cm) in space,
covering the entire land surface area of 149 million km2 every day. The constellation
provides images in four spectral bands (red, green, blue and near-infrared) with a res-
olution of 3.7− 4.1 m/pixel (depending on the altitude). Furthermore, Planet operates
an additional satellite constellation, called SkySat, with only 21 satellites, but a higher
resolution of approximately 1 m/pixel (multispectral) and 0.7 m/pixel (panchromatic),
respectively, used for scheduled orders.2

4.2 Data and Data Preparation
Data Planet offers a product called Basemap. A Basemap is an aggregated and processed
image of a previously specified AOI, computed from a set of satellite images of this AOI
captured in a specific time range. This usually provides a high image quality, since noisy
images, for example caused by clouds, snow or fog, can be filtered. Basemaps are com-
puted on a daily, weekly, monthly or quarterly base. We consider the monthly aggregated
Basemaps in the following. Basemaps are available for all months starting from January
2016. Ending with December 2020, this results in 60-months image time series with one
image per month. The image resolution of the Basemaps is 4.77 m/pixel at the Equator.
1 Planet Company Introduction (accessed: March 2021)
https://www.planet.com/company/

2 Planet Imagery Product Specification (accessed: March 2021)
https://assets.planet.com/docs/combined-imagery-product-spec-april-2019.pdf

https://www.planet.com/company/
https://assets.planet.com/docs/combined-imagery-product-spec-april-2019.pdf
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Figure 4.1: The Planet Basemap of the Harz highland area provides a high resolution of
2.93 m/pixel.

Since the altitude of a satellite is not fixed and depends on its current latitude, the image
resolution deviates as well. According to Planet, the image resolution at a specific latitude
is approximately obtained as

resolution ≈ resolutionEquator · cos(latitude) = 4.77 m/pixel · cos(latitude) (4.1)

resulting in an image resolution of 2.93 m/pixel for the Harz highland area Basemap (see
Figure 4.1).3 The Basemap is divided into 4096× 4096 pixels sized tiles, each of which
corresponds to a surface area of approximately 12× 12 km (see Figure 4.2).

Data Preparation Considering a Basemap tile for 60 time steps with three color channels
with an 8-bit color depth each would result in 2.88 GiB of data just for one tile. In order
to restrict the learning problem to a manageable size, each considered Basemap tile is
downscaled to 128× 128 pixels by averaging each 32× 32 pixel square to one pixel (see
Figure 4.1). In total, five Basemap tiles from different areas of the Harz with a high
percentage of woodlands are selected for training and testing (see Figure 4.2). Since we
are interested in making predictions about forest areas only, we create a mask indicating
woodlands for each considered tile manually. This mask is used to identify the pixels on
which the model is trained and tested (see Figure 4.3).

Noisy Data What exactly is defined as noise is completely task-dependent and may vary
strongly between different tasks. Image artifacts caused by the satellite cameras or the
image postprocessing algorithms are probably considered as noise in most applications.
But, for example, if the task is to forecast the weather, the cloud coverage is most likely an
important feature of the input data. On the other hand, if the task is to make predictions

3 Planet Basemaps Product Specification (accessed: March 2021)
https://assets.planet.com/products/basemap/planet-basemaps-product-specifications.pdf

https://assets.planet.com/products/basemap/planet-basemaps-product-specifications.pdf
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Figure 4.2: Planet Basemap of the Harz highland area (July 2019). The Basemap is divided in
4096× 4096 pixel sized tiles, identified by consecutive column and row ids. We consider
five different tiles with a high percentage of woodlands (highlighted in red).
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Figure 4.3: A manually created mask covers woodland areas on the scaled Basemap tiles.
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Figure 4.4: The artifacts in the leftmost image are most likely caused by an image post processing
procedure. The three rightmost images contain noise in form of clouds, snow and
fog. The red shade in the second picture from left could be caused by the sunlight, the
camera lens or a post processing step.

about the appearance of a landscape, the clouds can be considered as noise, since they
cover the underlying landscapes. In this scenario, knowledge about the presence of snow
might be a helpful feature, because it influences the landscape’s appearance directly. Since
we are interested in the appearance of forests, we consider both clouds and snow as noise.
Both cover the real dyes of the foliage and plants. Another noise factor is foggy and dull
weather, which can turn a bluish tint to the image. Some examples of noisy images are
shown in Figure 4.4.

4.3 Experimental Setup
Learning Task Our goal is, given a month-based time series of satellite images of woodland
areas, to forecast the image of the same AOI one time step ahead, which is one month after
the last time of the time series. We train and apply a model on a pixel base, which means
that instead of considering one time series of images, we consider many time series of
single pixels. Each pixel time series is evaluated independently from the other ones. One
pixel is defined by the three color channels red, green and blue. Thus, at least in the case
that we use a recurrent model, the input and output layers consist of three units each. To
keep the notation concise, we denote the output units y1, y2 and y3 as yR, yG and yB.

Constraints Appropriate constraints shall be embedded in the model in order to get good
predictions even for small training datasets. Since we do not have access to ground-truth
data or specific domain knowledge, we derive some constraints from the given data. It must
be noted that this constraint extraction strategy is only used to show the CESN functionality.
In a real-world application, one would derive constraints from ground-truth data or with
domain experts’ help. Deriving constraints from the training data may amplify unwanted
(and maybe unrecognized) biases. We define two different kinds of constraints, on the
one hand boundaries for the color values and on the other hand constraint regarding the
change of the color value between consecutive time steps. To get well-suited bounds for
the single color values, we picked several images from the training data and labeled them
manually as noisy or not noisy. Then we analyzed the color value ranges of the pixels of the
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Figure 4.5: (a) Sample pixels of the woodland satellite images in the RGB color space. (b) By
selecting appropriate boundary constraints, 99% of the sample pixels without noise are
within these bounds, while 57% of the noisy image pixels are outside these bounds.

not noisy labeled images. Figure 4.5a visualizes the sampled pixels in the RGB colorspace.
In Figure 4.5b, the two classes noisy and not noisy are colored differently. By selecting the
boundaries

yR(t) ≤ 0.50

yG(t) ≤ 0.50

yB(t) ≤ 0.35,
(4.2)

as indicated in the plot, 99% of the not noisy image pixels are within these bounds. On
the other hand, 57% of the pixels of the noisy images are outside that bounding box. Note
here that all images in the class not noisy do not contain any visible noise, but images
from the class noisy can be partially noise-free. The second kind of constraint bases on the
assumption that the color values of the forest pixels, mainly influenced by the color of the
foliage, change throughout the year, but only by a small amount between two consecutive
months. Here, the boundaries are derived from the training data directly, too, resulting in
the following difference constraints:

yR(t)− yR(t− 1) ≤ 0.05

yG(t)− yG(t− 1) ≤ 0.05

yB(t)− yB(t− 1) ≤ 0.05.

(4.3)

Experiment Description We implement an experiment with two independent variables:
In one dimension, we compare the impact of the constraints in a CESN to an ESN without
constraints. The second dimension is the size of the training dataset. Here, we compare
training sample dataset sizes of 25, 50, 75, 100, 150, 200, 500 and 1000. As already mentioned
above, we use five different Basemap tiles (and thus five different woodland areas in the
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Harz) for training and testing in total. Since we want to train especially on small training
datasets, but the tiles have a large variance among themselves, we use a special kind of
cross-validation to obtain statistically more representative results. Instead of leaving out a
small subset of the training data for validation, as it is usually done in cross-validation, we
do it the other way around: We pick our training samples from one of the five tiles and
evaluate the trained model on the other four tiles. For comparison, the model is also tested
on the training tile (using all pixels except the ones used for training). This experiment is
repeated so that each of the five tiles serves once as the training tile. In this way, we conduct
a total of 80 experiment runs (five different training tiles with 16 parameter combinations
each).

The training pixels are sampled uniform-randomly from the training tile. If a pixel is
selected, the whole 60-months time series of that pixel is used for training. The first 24
months of each pixel are discarded as transients to washout the initial reservoir state. The
months 25 to 59 are used as training inputs and the months 26 to 60 are the corresponding
target outputs. Here, the ESN is always fed by the inputs in that order (month 1 to month
59), starting with an initial reservoir state of 0Nx . While the training dataset size is variable,
the number of pixel time series used to embed the constraints is fixed to 1000 in each
run, as was also done in Section 3.2. As constraint data, all training samples are used and
additional constraint input pixel time series are also sampled from the training tile.

The hyperparameters are determined in advance with a grid search on the parameters
spectral radius, leaking rate and input scaling. The other parameters seem to have only a minor
impact on the performance of the ESN here. The training dataset size is fixed to 1000.
The grid search is repeated 15 times with different training sample datasets and reservoir
initializations. It was executed for the ESN only and the resulting hyperparameters are used
for both, the ESN and the CESN. We assume that good hyperparameters for the ESN perform
similarly well for the CESN. The entire grid search parameters are listed in Appendix A4.2.
The final ESN is initialized with the fixed hyperparameters regularization: 10−8, reservoir
size: 750 and sparsity: 0.0, together with the grid search selected hyperparameters spectral
radius: 0.99, leaking rate: 1.0 and input scaling: 0.1.

4.4 Results and Evaluation
For each of the five tiles, we obtain one training tile error and four test tile errors (in
the sense of RMSE), corresponding to the four test tiles. Note that here, unlike usual, by
training tile error we do not refer to the prediction error on the training dataset, but on
the pixels of the training tile that were not used for training. In this way, we can analyze
how well the model generalizes to the tile it was trained on compared to how well it
generalizes to other tiles. For each training dataset size we obtain a mean training tile
error by averaging over the five single training tile errors and a mean test tile error by
averaging over all 20 resulting test tile errors. The mean errors are listed in Table 4.1 and
visualized in Figure 4.6. In Figure 4.6a can be seen that, expectably, the generalization
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Training
Data Size

RMSE Training Tile RMSE Test Tiles

ESN
(·10−2 )

CSN
(·10−2 )

CESN/ESN ESN
(·10−2 )

CESN
(·10−2 )

CESN/ESN

25 14.7 7.9 54.7% 21.3 9.3 46.7%
50 7.9 7.5 95.4% 12.8 7.9 70.0%
75 6.7 7.5 110.1% 10.9 8.7 80.2%

100 6.5 7.4 112.7% 10.6 8.7 81.8%
150 6.1 7.4 120.2% 10.1 8.7 86.8%
200 5.9 7.4 123.5% 9.7 8.6 89.1%
500 5.7 7.3 128.0% 9.2 8.6 93.4%
1000 5.6 7.3 130.0% 9.0 8.5 94.8%

Table 4.1: The absolute mean errors of the ESN and the CESN approach on the training and the
test tiles and the ration between both in percent.
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Figure 4.6: (a) The error on the training tile is in general smaller than the one on the test tiles.
While the performance of the ESN increases with an increasing training dataset size,
the CESN delivers similarly good results across all training dataset sizes. (b) The CESN
performs worse than the ESN on the training tiles, but outperforms it on the test tiles.
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basically works better on the training tile than on the test tiles. The ESN performance
increases steadily with an increasing training dataset size. In contrast, the CESN delivers
similarly good results across all training dataset sizes. But while the CESN performs, in
general, worse than the ESN on the training tile, it outperforms it on the test tiles, especially
for the smaller training dataset sizes. The larger the training dataset becomes, the more
both results approach each other, but the CESN still performs slightly better even for a
maximum training dataset size of 1000 (see Figure 4.6b).

In the following, a detailed analysis of the results is given for a training dataset size of
1000 and exemplary for a specific training tile (1082-1370) and a specific test tile (1084-
1368). In Figure 4.7, the predicted outputs of all three color channels of 200 randomly
selected pixels of the test tile are plotted over the entire 60 months. As a reference, the
corresponding target image pixels are also visualized. Since the first 24 months are not
used for training, but only for an initial washout, the prediction results are very bad in this
range. Beginning with the 25-th month, the results are much better for both approaches.
One can see that the CESN output signals are much smoother than the ones generated
by the ESN and mostly within the bounds defined by the constraints. This indicates that
the constraints, in general, are satisfied even for new input data. The labeled time steps in
the plot correspond to the images in Figure 4.8. In Figure 4.8 the full predicted output
images at these time steps are shown side by side with the associated target images and a
pixel-wise RMSE computed as√

1
3

((
ypred

R − ytarget
R

)2
+
(

ypred
G − ytarget

G

)2
+
(

ypred
B − ytarget

B

)2
)

, (4.4)

where ytarget is the target pixel at the specific time step and ypred the predicted output of
the ESN or CESN, respectively, at the specific time step. In Figure 4.8c and Figure 4.8d,
corresponding to the months April and November 2019, it can be seen that both approaches
can yield good forecasting results. The noise caused by clouds is obviously not forecasted,
which yields larger errors at these pixels. According to the satellite image, the weather in
February 2018 (Figure 4.8a) was very snowy. This noise in the form of snow exists also in
the ESN predicted image. The CESN forecasts an image without snow. In contrast, there is
almost no snow on the image from March 2018 (Figure 4.8b), but as in January, the ESN
forecasts a snowy landscape and the CESN a not snowy one. Thus, the CESN error is much
smaller in this case. A similar behavior can be observed in October 2020 (Figure 4.8e). The
ESN predicts a much brighter image than it actually is, where the CESN predicted one is
just slightly brighter than the target. The reason for such predictions is that the kind of
noise we are dealing with in the training data usually extends across the entire training
tile (see Figure 4.9). Thus, it is learned by the ESN and then generalized to the test tiles, on
which the same noise does not necessarily occur. Here, the CESN ensures by its constraints
that the noise in the training data is not learned and thus not generalized to new data.
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Figure 4.7: The red, green and blue color channels of 200 pixels sampled from the test tile 1084-
1368 and plotted over the entire 60 months. The predictions of the ESN and the CESN
are compared to the target pixels. The labeled time steps correspond to Figure 4.8.
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Figure 4.8: Forecasts of the ESN and the CESN of the test tile 1084-1368 for the months (a) February
and (b) March 2018, (c) April and (d) November 2019 and (e) October 2020. The
networks are trained on tile 1082-1370. The errors are computed between the target
image and the predicted ones.

Figure 4.9: The target images of the training tile 1082-1370 for the months February and March
2018 and October 2020 are all noisy in terms of snow or clouds.
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The reservoir update equation we considered so far in Equation 2.1 differs slightly from
the one Jeager introduced when initially proposing the ESN approach in 2001 [17]. In
the original ESN definition, a recurrence exists within the reservoir, but also between the
output units and the reservoir neurons, resulting in a feeding of the network output back
to the reservoir (see Figure 5.1a). This kind of output feedback may be required, if the
output depends not only on the input history, but also on the output history. One common
task tackled with this definition is pattern generation: The network is trained with an
initial target output signal and the task is to predict the output for several upcoming time
steps recursively, where each prediction depends on the previously predicted one. There
may even be no input at all and the reservoir update is influenced only by the fed back
output signal. An often used benchmark in the context of pattern generation with ESNs is
the prediction of the Mackey-Glass time series [10, 17, 23, 28, 35].

Adding output feedback to the ESN yields an extended reservoir equation of

x(t) = (1−α) x(t− 1) + α σ

(
Win

[
1

u(t)

]
+ Wx(t− 1) + Wfby(t− 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
output feedback

)
, (5.1)

where the reservoir neurons are not only fed by the inputs u(t) and the previous reservoir
state x(t− 1), but also by the previous network output y(t− 1), weighted with feedback
weights Wfb ∈ RNx×Ny . As with W and Win, the feedback weights Wfb are assigned
randomly from a selected distribution. Due to the modified network architecture, the ESN
loses its fundamental characteristic: The read-out layer cannot be decoupled from the
rest of the network anymore, even for the unconstrained ESN, as visualized in Figure 5.2.
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Figure 5.1: (a) The ESN with output feedback is recurrent not only inside the reservoir but also
between the reservoir and the read-out layer. (b) During the training process, the
feedback connections are replaced by the training target signal as a further input.
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Figure 5.2: The output feedback connections create a recurrence between the reservoir layer and
the output layer. Thus, the read-out layer of the ESN can no longer be fully decoupled
from the rest of the network. The reservoir state x(t) depends on the network output
y(t−1) and thus cannot be computed without knowing the output weights Wout.

Hence, this property, used to avoid computational expensive, iterative learning methods,
can no longer be exploited in the training process. A solution to this issue, called teacher
forcing, is presented in [17]. The concept of teacher forcing is based on the assumption
that the trained network approximates the training target output signal ytarget quite well.
With this in mind, we can remove the feedback connections during the training process
and “bootstrap” the training process by feeding the reservoir with the target output signal
as a further input instead. Thus, we keep the feedforward property of the read-out layer
during the training and train the network as without output feedback (see Figure 5.1b).
In case y ≈ ytarget holds, the trained network will work as expected after reinserting the
feedback connections.

But while this approach can work well for the ESN training, there are some challenges
when it comes to the embedding of constraints, if output feedback is involved. First of all,
one key concept of the introduced constraint framework is that the reservoir history can
be computed in advance and accessed explicitly to construct the constraints out of it. This
precomputation is no longer possible since the reservoir history depends highly on the
output weights Wout, as indicated Figure 5.2. Using teacher forcing to precompute the
reservoir history does not work here for two reasons. On the one hand, the constraints are
not necessarily defined on the training data. Suppose constraints are defined on a separate
input signal, as it is done in the previous examples. In that case, no target output signal
ytarget, which could be used as a teacher signal, is available for this data. On the other hand,
even if the constraints are defined on the training data signal only, there is a big pitfall
preventing the use of teacher forcing for the constraint embedding: If the target output
signal ytarget does not satisfy the constraints by default, the embedded constraints would
influence the network output y in the attempt to satisfy them. As a result, ytarget ≈ y does
no longer hold, which is a prerequisite for teacher forcing to work. Hence, the constraints
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would be constructed from a reservoir history which is based on wrong network outputs y,
which finally leads to an embedding of constraints that do not refer to the actual network
output.

In the following, we present an approach tackling these issues and embed constraints to
an ESN with output feedback. The idea is to use teacher forcing for the actual training of
the ESN, but using an iterative approach to construct the constraints correctly in several
iterations. On the first iteration, the network is trained without any constraints using the
teacher forcing approach. Afterward, the trained ESN is run up to the last time step at
which a constraint is defined. The resulting reservoir states x and outputs y are used to
construct the constraints. All violated constraints are added and the training of the ESN
is repeated. Thus, in each iteration, new constraints are added to the network, which all
refer to the Wout computed in the previous iteration. Assuming that Wout converges to
a valid solution in which all constraints are satisfied, this process is repeated until this
fixed point is reached (or a maximum number of iterations is reached). Note here that we
use teacher forcing with the initial target signal to decouple the read-out layer from the
reservoir in the objective function, but use the previously computed output weights to
refine the constraints. Furthermore, we only add new constraints and keep the previous
ones. Thus, a constraint, formally defined at one time step, may results in multiple applied
constraints in the end, since for one specified constraint, a new one can be added in each
iteration. The more iterations are required to reach the fixed point, the more constraints
are applied, referring to previously computed output weights Wout. As a result, this can
lead to numerical issues in the QP solver or even to unsatisfiable solutions, if the reservoir
capacity is not large enough to represent the large number of (often redundant or obsolete)
constraints. As a solution, we discard a specific amount of old constraints in each iteration.
In general, the old constraints are still required, since otherwise, the solver would just
fallback to its initial (and wrong) solution. But we assume that many constraints are
redundant and by removing part of the old constraints randomly, the above-mentioned
issue is solved.

The key concept of the presented approach can be summarized as a kind of “double
bootstrapping”: On the one hand, the initial teacher signal “bootstraps” the objective
function minimization, while, on the other hand, the satisfaction of the constraints is
“bootstrapped” by itself iteratively. However, there is no guarantee that this approach works
in general, but a working example is presented in the following.

Example: Pattern Generation Given an initial training target signal ytarget for Ttrain time
steps, an ESN should be trained, which continues the signal on its own. After running
for some time steps, the signal should be shifted five time steps ahead. This condition is
forced using constraints. The target signal is generated as

ytarget(t) =
t

100
sin
(

t
10

)
. (5.2)

We initialize an ESN with 200 reservoir neurons with the hyperparameters input scaling: 0.5,
leaking rate: 0.3, spectral radius: 0.7, sparsity: 0.0 and regularization: 10−8. The ESN is trained
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Figure 5.3: (a) The ESN is trained on a training signal ytarget(t) and constraints shall shift the
learned signal to ytarget(t + 5). (b) The trained ESN approximates the training signal
well, while satisfying all constraints.

on the first Ttrain = 70 time steps with an initial washout time of 10 time steps. Afterward,
the signal runs free for 20 time steps and then shall be shifted by five time steps ahead
for the next 50 time steps (see Figure 5.3a). We allow an absolute constraint tolerance of
ε = 0.05. Expressed formally, we obtain 100 constraints, of which at most the half can be
violated at once:

y(t) ≤ ytarget(t + 5) + ε ∀ 91 ≤ t ≤ 140

y(t) ≥ ytarget(t + 5)− ε ∀ 91 ≤ t ≤ 140.
(5.3)

The plots in Figure 5.5 show the change of the learned signal over several iterations.
Initially, the ESN is trained without any constraints. Thus, almost all constraints are
violated and the learned signal is a good approximation of the continuation of the training
signal. After the first few iterations, the learned signal looks quite unstable with many
oscillations, but the more iterations are executed, the closer the learned signal approaches
the target. After 14 iterations, most of the constraints are satisfied, but it takes another 6
iterations until the training process terminates after 20 iterations with the satisfaction of
all constraints. Figure 5.4 shows the change of the number of violated constraints and the
number of applied constraints during the training process. While the number of violated
constraints is limited to 50, the number of applied constraints begins with 0 and increases
steadily up to 235 constraints in the last iteration.
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Figure 5.4: In each iteration, new constraints are added to the training problem. The number
of violated constraints decreases during the training process until all constraints are
satisfied.
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The satisfaction of all constraints is reached after 20 iterations (see Figure 5.3b for the
final result).



6 Conclusion and Discussion

Within this thesis, we introduced a framework based on [34] that allows embedding con-
straints into ESNs, which are RNNs from the field of reservoir computing. The specific
structure of the ESN is very similar to the feedforward neural network used in [34]. Thus,
the ESN is predestined to adapt the constraint-embedding framework. While an adaption
to other reservoir computing approaches may work due to their similar network character-
istics, other RNN structures in general, like LSTMs, do not seem to meet the requirements
to adapt this approach.

We discussed different types of constraints. The constraints introduced in [34] depend
entirely on the current network input, which does not make much sense when dealing with
dynamic systems. Hence, we introduced the discrete time-dependent constraints, which
do not influence the sensitivity to change of the network output with respect to changes
in the input, but the sensitivity with respect to a change in time. Here, we elaborated two
different approaches: First, we considered the discrete ESN equation as a continuous one
and approximated the discrete-time constraints. In the second approach, we defined the
constraints explicitly over the discrete network output. While the first approach can lead
to an undesired behavior, at least in some cases, we showed in different examples that
the second approach works quite well. In an illustrative example, we used constraints
for smoothing by regulating the discrete derivatives of the ESN output on the one hand
and forced the output signal to be periodic on the other hand. In both examples, the
constraints led to a kind of smoothing and regularization of the output. This behavior
is also described for the feedforward case in [33]. As a practical application, we applied
the introduced constraint framework to the forecasting of satellite images. We considered
monthly satellite images from woodland areas and used constraints to deal with noise like
clouds and snow. The constraints were defined as limits to the color values of the single
pixels and upper bounds to the change of a color between two consecutive months. Here,
we derived the constraints only from the available data without having any further domain
knowledge.

Even if we presented some well working examples in this thesis, the use cases for this
framework are restricted to very particular scenarios, which we discuss in the following.
Several challenges needs to be tackled. First of all, task-specific domain knowledge is
required in order to be able to define general constraints about the data at all. Suppose
we just derive the constraints from the available training data, as done exemplary in the
satellite image example. In that case, we may define constraints amplifying a bias that is in
the data and does not represent the real, expected target. In a real-world application, the
constraints should always be discussed and elaborated with domain experts in order to
validate the correctness of the constraints. Once representative constraints are worked out,
these constraints need to be formalized to fit into the framework. Even if the framework can
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express many different properties like monotonicity, smoothness, periodicity, curvature, or
upper and lower bounds, it is often not trivial to transform informal constraints into formal,
mathematical expressions. The third challenge consists of identifying which constraints
can add value to the learning task in the end. Constraints that are already satisfied by the
training data would not necessarily improve the model, especially if the training dataset is
large enough. On the other hand, if the constraints contradict the training data strongly, it
is questionable whether the model learns from the training data at all or only enforces
the constraints without learning anything. The training data and the constraints should
complement each other. As shown in the examples, constraints can be very useful if the
amount of available training data is very small or the dataset is very noisy. In this case, the
knowledge expressed with constraints is already decoded implicitly inside the training data,
but it is hard to learn due to missing patterns in the data. Furthermore, it can be beneficial
to apply constraints not only to the training data, but also on further input signals, as
also shown in this thesis. This approach is useful especially if the generation of training
target outputs is expensive. But this approach is only applicable for tasks where it is easy
to generate new input data. One example could be the prediction of observations from
satellite images. Thanks to companies like Planet or the European Union’s Copernicus
Programme, satellite images (the input data) of most areas of the Earth are available on a
nearly daily basis. But ground-truth measurements about the observations (the training
target data) often can only be measured manually. Here, constraints can help to fill the gap
between ground-truth measurements if the corresponding input data is available. Finally,
the last challenge is the evaluation of the learned model, as already explained in Chapter 1.
Depending on the task and the training data, it can be hard to find suitable evaluation
metrics. This holds especially when comparing the CESN approach to unconstrained
models, since in this case basically different training goals are tackled. In summary, four
major challenges need to be taken into account for the successful implementation of a
CESN:

1. Constraint definition using domain knowledge

2. Constraint formalization

3. Identification of constraints that add value to the model

4. Evaluation of the trained model

Future Work
One aspect of constraint learning that is not covered by this thesis is the verification of
the learned constraints. The approach we implemented so far is limited to the learning of
constraints from samples. While the presented examples showed that the generalization
of constraints seems to work well, there is no verification ensuring that the constraints
hold for new data in general. The feedforward CELM introduced in [34] takes this one step
further: By using the second order Taylor approximation and a clever sampling strategy, it



6 Conclusion and Discussion 51

can be ensured that the embedded constraints will also hold for new data from a predefined
input domain. This can be required if a reliable performance has to be guaranteed. One
example could be a neural network that controls the movements of a hardware system.
Limitations of the hardware usually bound the range of motion of such a system. Then, the
constraints, describing these limitations, need to be satisfied to ensure a smooth process.

Another aspect of future work is the deeper analysis of CESNs with output feedback.
Recursive prediction like pattern generation is a major field in the RNN research, for
example when dealing with speech recognition. Recursive prediction with ESNs is usually
achieved with output feedback ESNs. We presented a proof-of-concept that the constraint
learning approach can also work for this kind of ESNs. However, many questions still
remain unanswered, for example, how well this approach works in general, where the
limitations are and whether it can be guaranteed that the procedure converges to a fixed
point. Another interesting facet regarding this topic is the stability of a recursive, dynamic
system. Here, the question arises, whether constraints can help to improve the stability of
such a system.
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A1 ESN Derivatives

A1.1 Derivative with respect to the input
The Mi-th derivative of ycont with respect to umi
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A1.2 Derivative with respect to the reservoir state
The Mi-th derivative of ycont with respect to xprev
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Here, the derivative of xprev is defined similar to the one of u above:
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A2 Linear Least Squares as
Quadratic Program

The reduction of a CLLS to a QP requires only a reduction of the objective function. The
constraints are equally defined in both problem definitions:

Constrained Least Squares

minimize ||Ax− b||22
subject to Gx � h

Quadratic Program

minimize xTQx + cx

subject to Gx � h

The objective function of the CLLS can be reduced to the QP’s objective function as

||Ax− b||22 = (Ax− b)T(Ax− b)

= (xTAT − bT)(Ax− b)

= xTATAx− xTATb− bTAx + bTb.

Since the multiplication of xT ∈ R1×n, AT ∈ Rn×m and b ∈ Rm×1 is a real number, it
equals its transpose:

= xTATAx− 2bTAx + bTb.

The offset bTb can be dropped since it doesn’t influence the value of x in an optimal
solution. Setting Q := ATA and c := −2bTA yields the objective function of a QP in
standard form:

= xTQx + cx





A3 Practical Implementation

Overview The CESN framework introduced in this work and used for the following
experiments is implemented in Python 3.81. Internally, it uses the scientific computing
library NumPy2. The optimization tool Gurobi3 is used as the primary QP solver, but
other solvers are supported, too, via the high-level convex optimization interface CVXPY4.
Nevertheless, it is recommended to use Gurobi, since the detour via the CVXPY interface
can reduce the runtime performance and the implementation is optimized for the use
with Gurobi. The main interfaces of the CESN implementation are the functions fit and
predict, which, on the whole, behave as described in Section 3.1. The constraint definition
is implemented using Python operator overloading, which allows to define constraints
easily using the Python standard expression syntax. The basic module of a constraint
expression is the class ConstraintY, which is used as the abstract y in the constraint
equation. For example, a constraint that bounds the first output variable upwards to 5 can
be defined by

Y = ConstraintY()

c1 = Y[0] <= 5

The output history can be involved, by adding a second argument to Y. Then, the first
argument specifies the affected output variable and the second one the number of time
steps back in the history. For example, a constraint that forces the second output variable
to increase monotonously over time (defined by the first order difference quotient as
(y2(t)−y2(t−2))/2 ≥ 0) can be formulated as

c2 = (Y[1, 0] - Y[1, -2]) / 2 >= 0

Constraints involving difference quotients can further be simplified by specifying them
directly:

c2 = DQ(1, 1) >= 0

Here, DQ(n, delta) is internally resolved to a constraint expression representing the n-th
order difference quotient with respect to a specific difference ∆.

1 Python Programming Language (accessed: March 2021)
https://www.python.org

2 NumPy Scientific Computing Library (accessed: March 2021)
https://www.numpy.org

3 Gurobi Optimization Tool (accessed: March 2021)
https://www.gurobi.com

4 CVXPY Convex Optimization Interface (accessed: March 2021)
https://www.cvxpy.org

https://www.python.org
https://www.numpy.org
https://www.gurobi.com
https://www.cvxpy.org
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Numerical Issues The QP formulation introduced in Equation 2.38 and Equation 2.39
and used to optimize the network read-out weights seems to be unstable in the sense of
numerical accuracy and solvability, at least in the context of the ESN training reduction as
used in this thesis. This issue is tackled by using an alternative, equivalent QP formulation
on the one hand and using suitable QP solver settings on the other hand. The alternative
QP formulation seems to be more stable and is obtained as

minimize
x̃∈Rm,x∈Rn

x̃T x̃

subject to Ax− x̃ = b

Gx � h

(A3.1)

for an A ∈ Rm×n, b ∈ Rm, G ∈ Rp×n and h ∈ Rp. Here, the term Ax− b in the objective
function in Equation 2.30 is substituted by a slack variable x̃, where the substitution is
realized via constraints. This QP can be rephrased to a QP with only one optimization
variable x as

minimize
x∈Rm+n

xTQx

subject to Ãx = b

G̃x � h

(A3.2)

with

Q =

[
Im 0m×n

0n×m 0n×n

]
=



1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · 1 0 · · · 0
0 0 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · 0 0 · · · 0


∈ Rm+n×m+n , (A3.3)
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and
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0p×m G
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0 · · · 0 g11 · · · g1n
... . . . ...

... . . . ...
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 ∈ Rp×m+n. (A3.5)

Beside this reformulation, we set different Gurobi solver settings to tackle numerical
issues. In some cases, the homogeneous barrier algorithm [47] can solve problems, for
which the default barrier algorithm cannot find a valid solution.5 This algorithm is a bit
5 Gurobi Guidelines for Numerical Issues (accessed: March 2021)
files.gurobi.com/Numerics.pdf

files.gurobi.com/Numerics.pdf
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slower than the default one.6 Another important parameter is the feasibility tolerance.7 As its
name already suggests, this parameter specifies to which tolerance all constraints must be
satisfied. A constraint gx ≤ h will be considered to hold, if gx− h ≤ feasibilityTolerance.8

This tolerance needs to be taken into account in the CESN training algorithm, where the
constraints are evaluated independently from the Gurobi solver. If the tolerance in the
CESN training algorithm is smaller than the Gurobi’s one, it happens in rare cases that
Gurobi considers constraints as satisfied which are not considered as satisfied by the CESN
training algorithm. This would lead to a non-terminating loop of training iterations and
QP solving.

A third aspect of the solving process is the termination with a sub-optimal solution. If
Gurobi is not able to find an optimal solution in a reasonable amount of time, it terminates
with the best solution found until then. This solution is maybe not optimal, or optimal
but the solver could not proof its optimality. But optimal solutions are not necessary at
all and in many cases the returned sub-optimal solution is already sufficient good. Other
neural network training algorithms, e.g., gradient descent based algorithms, do not yield
(global) optimal solutions either.

Memory limits The size of the matrices in the QP become very large even for middle sized
problem formulations. This is mainly caused by the large QP matrices, resulting from
the reduction presented in Chapter 2 and the reformulated QP formulation presented
above. The sizes of these matrices depend on the size of the training dataset, the number
of network outputs, the reservoir size and the number of applied constraints. Since most
of these matrices are very sparse, we use the scientific computing library SciPy9, which has
an exhaustive sparse matrix framework, fully compatible with NumPy. But even if Gurobi
supports Scipy’s sparse matrices for the QP definition, the actual solving process requires
much more memory, even for sparse matrices. One solver setting that reduces the required
amount of memory is to disable Gurobi’s pre-solve algorithm, which does not seem to
extend the solving time much. Furthermore, Neumann [33] proposed a simpler (and much
smaller) QP formulation, which can be used, if the CESN outputs can be assumed as
independent, also in the sense of prior knowledge. By default, the CESN is trained for
all output units at once. This allows to define constraints involving several outputs. But
in the case that every constraint involves only one output unit, the CESN training can be
considered separately for each output unit. This does not only simplify the QP in the sense
of computation costs, but also in the sense of required memory. All three learning tasks
presented in this thesis deal with independent outputs only.

6 Gurobi Reference to Parameter BarHomogeneous (accessed: March 2021)
https://www.gurobi.com/documentation/9.1/refman/barhomogeneous.html

7 Gurobi Reference to Parameter FeasibilityTol (accessed: March 2021)
https://www.gurobi.com/documentation/9.1/refman/feasibilitytol.html

8 Gurobi Reference to Tolerances and user-scaling (accessed: March 2021)
https://www.gurobi.com/documentation/9.1/refman/tolerances_and_user_scalin.html

9 SciPy Scientific Computing Library (accessed: March 2021)
https://www.scipy.org

https://www.gurobi.com/documentation/9.1/refman/barhomogeneous.html
https://www.gurobi.com/documentation/9.1/refman/feasibilitytol.html
https://www.gurobi.com/documentation/9.1/refman/tolerances_and_user_scalin.html
https://www.scipy.org




A4 Gridsearch parameters
A4.1 Illustrative Examples
Example 1: Difference Quotient Constraints

Hyperparameter Values (Occurrences out of 30 repetitions)

Fixed Parameters Sparsity: 0.0

Leaking rate 0.1, 0.2(17), 0.3(13), 0.7, 0.9
Spectral radius 0.1, 0.2(26), 0.4(3), 0.6, 0.7(1), 0.99
Input scaling 0.01, 0.05, 0.1, 0.5(9), 1(18), 2(2), 4(1)
Regularization 10−8(27), 10−5(2), 10−4(1), 10−3, 1
Reservoir size 100(6), 500(24)

Table A4.1: Gridsearch: Illustrative example 1 (ESN)

Hyperparameter Values (Occurrences out of 30 repetitions)

Fixed Parameters Sparsity: 0.0, Regularization: 10−8

Leaking rate 0.1(1), 0.3(29), 0.7
Spectral radius 0.1, 0.2, 0.4, 0.6(27), 0.9(3)
Input scaling 0.1(2), 0.5(26), 1(2), 2, 4
Reservoir size 100, 500(30)

Table A4.2: Gridsearch: Illustrative example 1 (CESN)

Example 2: Periodicity Constraints

Hyperparameter Values (Occurrences out of 30 repetitions)

Fixed Parameters Sparsity: 0.0

Leaking rate 0.1, 0.3(25), 0.7(5)
Spectral radius 0.4(3), 0.6(23), 0.9(4)
Input scaling 0.1(4), 0.5(17), 1.0(8), 2.0(1), 4.0
Regularization 10−8(23), 10−5(7), 10−3

Reservoir size 100(7), 500(23)

Table A4.3: Gridsearch: Illustrative example 2 (ESN)
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Hyperparameter Values (Occurrences out of 30 repetitions)

Fixed Parameters Sparsity: 0.0

Leaking rate 0.1(2), 0.3(13), 0.7(15)
Spectral radius 0.4(7), 0.6(15), 0.9(8)
Input scaling 0.1, 0.5(12), 1.0(14), 2.0(4), 4.0
Regularization 10−8(5), 10−5(16), 10−3(9)
Reservoir size 100(17), 500(13)

Table A4.4: Gridsearch: Illustrative example 2 (ESN (mean))

Hyperparameter Values (Occurrences out of 30 repetitions)

Fixed Parameters Sparsity: 0.0

Leaking rate 0.1(30), 0.3, 0.7
Spectral radius 0.4(21), 0.6(8), 0.9(1)
Input scaling 0.1, 0.5(2), 1.0(28), 2.0, 4.0
Regularization 10−8, 10−5(30), 10−3

Reservoir size 100, 500(30)

Table A4.5: Gridsearch: Illustrative example 2 (ESN (mean extended))

Hyperparameter Values (Occurrences out of 30 repetitions)

Fixed Parameters Sparsity: 0.0, Regularization: 10−8

Leaking rate 0.1(26), 0.3(4), 0.7
Spectral radius 0.4(7), 0.6(23), 0.9
Input scaling 0.1(18), 0.5(10), 1.0(2), 2.0, 4.0
Reservoir size 100(12), 500(18)

Table A4.6: Gridsearch: Illustrative example 2 (CESN (training data only))

Hyperparameter Values (Occurrences out of 30 repetitions)

Fixed Parameters Sparsity: 0.0, Regularization: 10−8

Leaking rate 0.1(30), 0.3, 0.7
Spectral radius 0.4(1), 0.6(29), 0.9
Input scaling 0.1(29), 0.5(1), 1.0, 2.0, 4.0
Reservoir size 100(1), 500(29)

Table A4.7: Gridsearch: Illustrative example 2 (CESN)
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Hyperparameter Values (Occurrences out of 15 repetitions)

Fixed Parameters Sparsity: 0.0, Regularization: 10−8,
Reservoir size: 750

Leaking rate 0.85, 1.0(15)
Spectral radius 0.9(1), 0.99(14), 1.25
Input scaling 0.01, 0.05(5), 0.1(10), 0.5

Table A4.8: Gridsearch: Satellite image forecasting application





A5 Master’s Thesis Scope

When dealing with model learning for time series like speech recognition, text analysis, or
stock market prediction, using Recurrent neural networks (RNN) is state-of-the-art. Reser-
voir networks are a specific kind of RNNs and have proven to be an efficient framework for
learning dynamic systems. Instead of training the entire network, only the so-called read-
out stage is optimized and the weights of all internal connections are assigned randomly
and are fixed during training. Since the readout stage may be optimized using training
methods like linear regression or Ridge regression, the computational training costs are
reduced extremely. In order to increase the performance of the trained network, a-priori
knowledge shall be injected using constraint optimization as previously introduced by
Neumann, Rolf & Steil, 2013. This novel approach shall then be benchmarked on synthetic
data and applied to time series of satellite data.

Task 1 Literature Research on reservoir learning, including literature research to the the-
oretical background, benchmarks and experimental results and on the constraint
optimization technique for training neural networks.

Task 2 The Constraint Optimization Approach shall be implemented and applied to reser-
voir networks. It is implemented using a suitable framework (e.g. Python or MATLAB)
including documentation and tested using some synthetic training data shall provide
a first account on the suitability of the method.

Task 3 Satellite Image Data Time Series shall be considered as a specific application do-
main. From this particular scenario-specific constraints are derived. The images are
either preprocessed using state-of- the-art image processing methods like Fourier
transformations or inputted in raw format. In cased, no suitable data can be obtained
or no reasonable domain-specific constraints can be derived, a simpler standard
time-series forecasting scenario will serve as a fallback. Results are evaluated w.r.t. to
the domain-specific setting.

Task 4 The Master Thesis shall document the results, including the implementation
according to the usual standards for software-related work.

Braunschweig, April 6, 2021
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