

Master's Thesis

Constraint Optimization for Reservoir Learning of Multivariate Time Series

Yannic Lieder, April 13, 2021

Master's Thesis

Constraint Optimization for Reservoir Learning of Multivariate Time Series

Yannic Lieder, April 13, 2021

Outline

- 1. Constraint Definition
- 2. Embedding Constraints into the Neural Network
- 3. Example: Forecasting of Satellite Images
- 4. Future Work & Conclusion

Outline

- 1. Constraint Definition
- 2. Embedding Constraints into the Neural Network
- 3. Example: Forecasting of Satellite Images
- 4. Future Work & Conclusion

RELIABLE INTEGRATION OF CONTINUOUS CONSTRAINTS INTO EXTREME LEARNING MACHINES

KLAUS NEUMANN*

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University Universitätsstraße 25, 33615 Bielefeld, Germany

kneumann@cor-lab.de

MATTHIAS ROLF

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University
Universitätsstraße 25, 33615 Bielefeld, Germany
mrolf@cor-lab.de

JOCHEN JAKOB STEIL

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University
Universitätsstraße 25, 33615 Bielefeld, Germany
jsteil@cor-lab.de

The application of machine learning methods in the engineering of intelligent technical systems often requires the integration of continuous constraints like positivity, monotonicity, or bounded curvature in the learned function to guarantee a reliable performance. We show that the extreme learning machine is particularly well suited for this task. Constraints involving arbitrary derivatives of the learned function are effectively implemented through quadratic optimization because the learned function is linear in its parameters, and derivatives can be derived analytically. We further provide a constructive approach to verify that discretely sampled constraints are generalized to continuous regions and show how local violations of the constraint can be rectified by iterative relearning. We demonstrate the approach on a practical and challenging control problem from robotics, illustrating also how the proposed method enables learning from few data samples if additional prior knowledge about the problem is available.

Keywords: extreme learning machine, neural network, prior knowledge, continuous constraints, regression.

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld Uni Universitätsstraße 25, 33615 Bielefeld, Germany

MATTHIAS ROLF

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld

Universitätsstraße 25, 33615 Bielefeld, Germany

JOCHEN JAKOB STEIL

Research Institute for Cognition and Robotics (CoR-Lab), Bielefel
Universitätsstraße 25, 33615 Bielefeld, Germany

The application of machine learning methods in the engineering of intelligent techn systems often requires the indergation of continuous constraints like positivity, no tonicity, or bounded curvature in the learned function to guarantee a reliable per mance. We show that the extreme learning machines is particularly well sailed for implemented through your action of the period of the period of the period of the implemented through your action point action because the humon function is linear in parameters, and derivatives can be derived analystically. We further provide a coast tive approach to verify that discretely sampled constraints are generalized to continuregions and show how local violations of the constraint can be restricted by iterative learning. We demonstrate the approach on a practical and challenging control probform robotics, illustrating also how the proposed entode enables learning from few of

Keywords: extreme learning machine, neural network, prior knowledge, continustraints, regression.

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld Univ Universitätsstraße 25, 33615 Bielefeld, Germany

MATTHIAS ROLF

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld

Universitätsstraße 25, 33615 Bielefeld, Germany

modificensish de

JOCHEN JAKOB STEIL

Research Institute for Cognition and Robotics (CoR-Lab), Bielefel
Universitätsstraße 25, 33615 Bielefeld, Germany

The application of machine learning methods in the engineering of intelligent techn systems often requires the integration of continuous constraints like pointivity, most tonicity, or bounded curvature in the learned function to guarantee a reliable per mance. We show that the extreme learning machine is particularly well suited for task. Constraints involving arbitrary derivatives of the learned function are effective task. Constraints involving arbitrary derivatives of the learned function are effective parameters, and derivatives can be derived analystically. We further provide a const tive approach to verify that discretely sampled constraints are generalized to continuregions and show how local violations of the constraint can be rectified by iterative learning. We demonstrate the approach on a practical and challenging control prob from robotics, illustrating also how the proposed method enables learning from few d

Keywords: extreme learning machine, neural network, prior knowledge, continu straints. regression.

Adapted from Neumann (2013)

KLAUS NEUMANN*

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld Uni
Universitätsstraße 25, 33615 Bielefeld, ermany
kneumann@cor-lab.de

MATTHIAS ROLF

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld Universitätsstraße 25, 33615 Bielefeld, Germany
modificar-lab de

JOCHEN JAKOB STEIL

Research Institute for Cognition and Robotics (CoR-Lab), Bielefe
Universitätsstraße 25, 33615 Bielefeld, Germany

The application of machine learning methods in the engineering of intelligent technic systems often requires the integration of continuous constraints like positivity, most tonicity, or bounded curvature in the learned function to guarantee a reliable perfect mance. We show that the extreme learning machine is particularly well suited for the task. Constraints involving arbitrary derivatives of the learned function are effective implemented through quadratic optimization because the learned function is linear in a parameters, and derivatives can be derived analytically. We further provide a constructive approach to verify that discretely sampled constraints are generalized to continuous regions and show how local violations of the constraint can be rectified by iterative learning. We demonstrate the approach on a practical and challenging control problem

from robotics, illustrating also how the proposed method enables learning from few samples if additional prior knowledge about the problem is available.

**Kenegoria outpure learning machine, payers proposed method enables learning from few samples if additional prior knowledge about the problem is available.

Target function steadily increasing:

$$u_1 \le u_2 \Rightarrow y(u_1) \le y(u_2)$$

Adapted from Neumann (2013)

KLAUS NEUMANN*

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld Uni
Universitätsstraße 25, 33615 Bielefeld, Germany

MATTHIAS ROLF

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld

Universitätsstraße 25, 33615 Bielefeld, Germany

modificon-lab de

JOCHEN JAKOB STEIL

Research Institute for Cognition and Robotics (CoR-Lab), Bielefele
Universitätssträße 25, 39515 Bielefeld, Germany
isterißonslah de

The application of machine learning methods in the engineering of intelligent technic systems often requires the integration of continuous constraints like positivity, mon tonicity, or bounded curvature in the learned function to guarantee a reliable perfe mance. We show that the extreme learning machine is particularly well suited for it task. Constraints involving arbitrary derivatives of the learned function are effective task. Constraints involving arbitrary derivatives of the learned function are effective parameters, and derivatives can be derived analytically. We further provide a constraint tive approach to verify that discretely sampled constraints are generalized to continuo regions and show how local violations of the constraint can be retified by iterative learning. We demonstrate the approach on a practical and challenging control proble from robotions, illustrating also how the proposed method enables clearing from few day

from robotics, illustrating also how the proposed method enables learning from fer samples if additional prior knowledge about the problem is available. Keywords: extreme learning machine, neural network, prior knowledge, continuou

Target function steadily increasing:

$$u_1 \le u_2 \Rightarrow y(u_1) \le y(u_2)$$

or

$$\frac{\partial}{\partial u}y(u) \ge 0$$

KLAUS NEUMANN*

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld Universitätsstraße 25, 33615 Bielefeld, Germany

MATTHIAS ROLF

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld Universitätsstraße 25, 33615 Bielefeld, Germany

JOCHEN JAKOB STEIL

Research Institute for Cognition and Robotics (CoR-Lab), Bielefelk
Universitätsstraße 25, 33615 Bielefeld, Germany

The application of machine learning methods in the engineering of intelligent techn systems often requires the integration of continuous constraints like positivity, more tonicity, or bounded curvature in the learned function to guarantee a reliable per mance. We show that the extreme learning machine is particularly well suited for task. Constraints involving arbitrary derivatives of the learned function are effective implemented through quadratic optimization because the learned function is linear in parameters, and derivative can be derived analytically. We further provide a coastration of the control of the control of the control of the control of the regions and show how local violations of the constraint can be rectified by iterative learning. We demonstrate the approach on a practical and challenging control probform robotics, illustrating also how the proposed method enables learning from few de-

samples if additional prior knowledge about the problem is available.

Keywords: extreme learning machine, neural network, prior knowledge, continuou

Target function steadily increasing:

$$u_1 \le u_2 \Rightarrow y(u_1) \le y(u_2)$$

or

$$\frac{\partial}{\partial u}y(u) \ge 0$$

Constraint

Adapted from Neumann (2013)

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld Univ Universitätsstraße 25, 33615 Bielefeld, Germany www.newnon.gov.olab.de

MATTHIAS ROLF

Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld

Universitätsstraße 25, 33615 Bielefeld, Germany

JOCHEN JAKOB STEIL

Research Institute for Cognition and Robotics (CoR-Lab), Bielefe
Universitätsstraße 25, 33615 Bielefeld, Germany

systems often requires the integration of continuous constraints like positivity, me tonicity, or bounded curvature in the learned function to guarantee a reliable per masor. We show that the extreme learning machine is particularly well autied for task. Constraints involving arbitrary derivatives of the learned function are effect implemented through quadratic optimization because the learned function is linear in parameters, and derivatives can be derived manylutically. We further provide a const tive approach to verify that discretely sampled constraints are generalized to continue regions and show how local violations of the constraint can be restified by iterative learning. We demonstrate the approach on a practical and challenging control provides from robotics, illustrating also how the proposed method enables learning from few

Keywords: extreme learning machine, neural network, prior knowledge, continuo straints. regression.

Without constraints

With monotonicity constraints

Adapted from Neumann (2013)

Adapting constraint to time series case

Static Case

(Feedforward Neural Network)

Input uOutput y

VS.

Dynamic Case

(Recurrent Neural Network)

Input u(1), ..., u(t-1), u(t)Output y(1), ..., y(t-1), y(t)

Adapting constraint to time series case

Static Case

(Feedforward Neural Network)

Input uOutput y

Constraints describe sensitivity of y w.r.t. u

VS.

Dynamic Case

(Recurrent Neural Network)

Input u(1), ..., u(t-1), u(t)Output y(1), ..., y(t-1), y(t)

F

Adapting constraint to time series case

Static Case

(Feedforward Neural Network)

Input uOutput y

Constraints describe sensitivity of y w.r.t. u

VS.

Dynamic Case

(Recurrent Neural Network)

Input u(1), ..., u(t-1), u(t)Output y(1), ..., y(t-1), y(t)

Constraints describe sensitivity of y w.r.t. time t

Time-dependent Constraint*

$$\sum_{h=0}^{H} \gamma_h y(t-h) \le c$$

*simplified to one-dimensional output

Time-dependent Constraint*

*simplified to one-dimensional output

$$\sum_{h=0}^{H} \gamma_h y(t-h) \le c$$

• Upper (or lower) bound to the output:

$$y(t) \leq 0.4$$

$$\sum_{h=0}^{H} \gamma_h y(t-h) \le c$$

• Upper (or lower) bound to the output:

$$y(t) \leq 0.4$$

Steadily decreasing (or increasing) output:

$$y(t) - y(t-1) \le 0$$

$$\sum_{h=0}^{H} \gamma_h y(t-h) \le c$$

Upper (or lower) bound to the output:

$$y(t) \leq 0.4$$

Steadily decreasing (or increasing) output:

$$y(t) - y(t-1) \le 0$$

Periodically repeating output (with period P):

$$y(t) - y(t - P) \le 0$$
$$-y(t) + y(t - P) \le 0$$

$$\sum_{h=0}^{H} \gamma_h y(t-h) \le c$$

Upper (or lower) bound to the output:

$$y(t) \leq 0.4$$

Steadily decreasing (or increasing) output:

$$y(t) - y(t-1) \le 0$$

Periodically repeating output (with period P):

$$y(t) - y(t - P) \le 0$$
$$-y(t) + y(t - P) \le 0$$

Difference Quotient of arbitrary order

$$\sum_{h=0}^{H} \gamma_h y(t-h) \le c$$

Outline

- 1. Constraint Definition
- 2. Embedding Constraints into the Neural Network
- 3. Example: Forecasting of Satellite Images
- 4. Future Work & Conclusion

$$\mathbf{y}(t) = \mathbf{W}^{\text{out}}\mathbf{x}(t)$$

- feedforward
- linear read-out

$$\mathbf{x}(t) = \sigma \left(\mathbf{W}^{\text{in}} \mathbf{u}(t) + \mathbf{W} \mathbf{x}(t-1) \right)$$

$$\mathbf{y}(t) = \mathbf{W}^{\text{out}}\mathbf{x}(t)$$

- high-dimensional
 feedforward
 - non-linear linear read-out

recurrent

Minimize Training Error:

$$\epsilon_{ ext{RMSE}} = \left| \left| \mathbf{Y} - \mathbf{Y}^{ ext{target}} \right| \right|^2$$

Minimize Training Error:

$$\epsilon_{\text{RMSE}} = ||\mathbf{Y} - \mathbf{Y}^{\text{target}}||^2$$

$$= ||\mathbf{W}^{\text{out}}\mathbf{X} - \mathbf{Y}^{\text{target}}||^2$$
 $\mathbf{y}(t) = \mathbf{W}^{\text{out}}\mathbf{x}(t)$

Minimize Training Error:

inimize Training Error:
$$\epsilon_{\text{RMSE}} = ||\mathbf{Y} - \mathbf{Y}^{\text{target}}||^{2} \qquad \mathbf{y}(t) = \mathbf{W}^{\text{out}}\mathbf{x}(t)$$

$$= ||\mathbf{W}^{\text{out}}\mathbf{X} - \mathbf{Y}^{\text{target}}||^{2}$$

$$= ||\mathbf{X}^{T}(\mathbf{W}^{\text{out}})^{T} - (\mathbf{Y}^{\text{target}})^{T}||^{2}$$

Minimize Training Error:

inimize Training Error:
$$\epsilon_{\text{RMSE}} = ||\mathbf{Y} - \mathbf{Y}^{\text{target}}||^{2} \qquad \mathbf{y}(t) = \mathbf{W}^{\text{out}}\mathbf{x}(t)$$

$$= ||\mathbf{W}^{\text{out}}\mathbf{X} - \mathbf{Y}^{\text{target}}||^{2}$$

$$= ||\mathbf{X}^{T}(\mathbf{W}^{\text{out}})^{T} - (\mathbf{Y}^{\text{target}})^{T}||^{2}$$

Equivalent to a Linear Least Squares Problem:

$$\mathbf{W}^{\text{out}} = \underset{\mathbf{W}^{\text{out}}}{\text{arg min}} \left| \left| \mathbf{X}^{T} (\mathbf{W}^{\text{out}})^{T} - (\mathbf{Y}^{\text{target}})^{T} \right| \right|^{2}$$

Minimize Training Error:

inimize Training Error:
$$\epsilon_{\text{RMSE}} = ||\mathbf{Y} - \mathbf{Y}^{\text{target}}||^{2} \qquad \mathbf{y}(t) = \mathbf{W}^{\text{out}}\mathbf{x}(t)$$

$$= ||\mathbf{W}^{\text{out}}\mathbf{X} - \mathbf{Y}^{\text{target}}||^{2}$$

$$= ||\mathbf{X}^{T}(\mathbf{W}^{\text{out}})^{T} - (\mathbf{Y}^{\text{target}})^{T}||^{2}$$

Equivalent to a Linear Least Squares Problem:

$$\mathbf{W}^{\text{out}} = \arg\min_{\mathbf{W}^{\text{out}}} \left| \left| \mathbf{X}^{T} (\mathbf{W}^{\text{out}})^{T} - (\mathbf{Y}^{\text{target}})^{T} \right| \right|^{2}$$

Linear Least Squares:

$$\min ||\mathbf{AX} - \mathbf{b}||^2$$

Reduction to Quadratic Program

Constraints* to QP constraints

$$\sum_{h=0}^{H} \gamma_h y(t-h) \le c$$

.

*simplified to one-dimensional output

Constraints* to QP constraints

$$\sum_{h=0}^{H} \gamma_h y(t-h) \le c$$

$$\Leftrightarrow \sum_{h=0}^{H} \gamma_h \mathbf{W}^{\text{out}} \mathbf{x}(t-h) \le c$$

*simplified to one-dimensional output

Constraints* to QP constraints

$$\sum_{h=0}^{H} \gamma_h y(t-h) \le c$$

$$\Leftrightarrow \sum_{h=0}^{H} \gamma_h \mathbf{W}^{\text{out}} \mathbf{x}(t-h) \le c$$

$$\Leftrightarrow \left(\sum_{h=0}^{H} \gamma_h \mathbf{x}(t-h)^T\right) \cdot (\mathbf{W}^{\text{out}})^T \le c$$

*simplified to one-dimensional output

Outline

- 1. Constraint Definition
- 2. Embedding Constraints into the Neural Network
- 3. Example: Forecasting of Satellite Images
- 4. Future Work & Conclusion

Satellite Image Time Series of the Harz (monthly)

Noisy Images

Training Task

- Given a time series of satellite images, predict upcoming month
- Train on single pixels
- Three inputs and three outputs per pixel (RGB)

Boundary Constraints

Boundary Constraints

- Not noisy image pixels
- Noisy image pixels

Constraints

Boundary Constraints

$$y_R(t) \le 0.5$$

$$y_G(t) \le 0.5$$

$$y_G(t) \le 0.5$$
$$y_B(t) \le 0.35$$

Constraints

Boundary Constraints

$$y_R(t) \le 0.5$$

$$y_G(t) \le 0.5$$

$$y_B(t) \le 0.35$$

Difference Constraints

$$|y_R(t) - y_R(t-1)| \le 0.05$$

$$|y_G(t) - y_G(t-1)| \le 0.05$$

$$|y_B(t) - y_B(t-1)| \le 0.05$$

Constraints

Boundary Constraints

$$y_R(t) \le 0.5$$

$$y_G(t) \leq 0.5$$

$$y_B(t) \le 0.35$$

Difference Constraints

$$|y_R(t) - y_R(t-1)| \le 0.05$$

$$|y_G(t) - y_G(t-1)| \le 0.05$$

$$|y_B(t) - y_B(t-1)| \le 0.05$$

→ 9 constraints at each time step in total

Training Method

Results (1/2)

Results (2/2)

Prediction Examples (1/3)

CESN ESN Target Prediction Error

Prediction Examples (2/3)

ESN CESN Target Prediction Error

Prediction Examples (3/3)

ESN CESN Target Prediction Error

Outline

- 1. Constraint Definition
- 2. Embedding Constraints into the Neural Network
- 3. Example: Forecasting of Satellite Images
- 4. Future Work & Conclusion

Future Work: Recursive Predictions

$$\sum_{h=0}^{H} \gamma_h y(t-h) \le c$$

