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The application of machine learning methods in the engineering of intelligent technical
systems often requires the integration of continuous constraints like positivity, mono-
tonicity, or bounded curvature in the learned function to guarantee a reliable perfor-
mance. We show that the extreme learning machine is particularly well suited for this
task. Constraints involving arbitrary derivatives of the learned function are effectively
implemented through quadratic optimization because the learned function is linear in its
parameters, and derivatives can be derived analytically. We further provide a construc-
tive approach to verify that discretely sampled constraints are generalized to continuous
regions and show how local violations of the constraint can be rectified by iterative re-
learning. We demonstrate the approach on a practical and challenging control problem
from robotics, illustrating also how the proposed method enables learning from few data
samples if additional prior knowledge about the problem is available.
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Adapting constraint to time series case
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Time-dependent Constraint™

H
thy(t —h) <c
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*simplified to one-dimensional output
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Time-dependent Constraint™

Number of time steps in history

Z Yy (1 ‘ < C

network output

coefficients
*simplified to one-dimensional output
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Examples

. Upper (or lower) bound to the output:
y(t) < 0.4
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Examples
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y(t) < 0.4

Steadily decreasing (or increasing) output:
y(t) —y(t—1) <0
Periodically repeating output (with period P):

y(t) —y(t—P) <0
—y(t) +y(t—P) <0

NILg

o™ e :
5‘% ‘3% Technische
R

i*ﬁ ¥& 5 Universitit Constraint Optimization for Reservoir Learning of Multivariate Time Series
s

Y .
AN . . .
Vg s Braunschweig Yannic Lieder April 13, 2021
SC

10



Examples

Upper (or lower) bound to the output:
y(t) < 0.4

Steadily decreasing (or increasing) output:
y(t) —y(t —1) <0
Periodically repeating output (with period P):
y(t) —y(t —P) <0
—y(t) +y(t - P) <0

Difference Quotient of arbitrary order

NILg

> Universitat Constraint Optimization for Reservoir Learning of Multivariate Time Series

O v
3|58 o :
» AR ~ . . .
i Braunschweig Yannic Lieder April 13, 2021

o e :
5“33_; ‘3% Technische
5% %z

10



Outline

2. Embedding Constraints into the Neural Network
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The Echo State Network (1/3)
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The Echo State Network (1/3)
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. feedforward
. linear read-out
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» high-dimensional . feedforward
. non-linear . |linear read-out
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The Echo State Network (3/3)
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The Echo State Network (3/3)

- Minimize Training Error:

ERMSE = HY _ ytarget | ‘2
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The Echo State Network (3/3)

Minimize Training Error:

CERMSE
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The Echo State Network (3/3)

- Minimize Training Error:
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The Echo State Network (3/3)

- Minimize Training Error:
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The Echo State Network (3/3)

- Minimize Training Error:
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Reduction to Quadratic Program

min €ERMSE min ||AX — b||? min xQx
s.t. Gx <h
NILgy,
‘32 Technische
: '§§ Universitit Constraint Optimization for Reservoir Learning of Multivariate Time Series 15

Y .
“*s Braunschweig

Yannic Lieder April 13, 2021



Constraints™ to QP constraints
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Outline

3. Example: Forecasting of Satellite Images
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Satellite Image Time Series of the Harz (monthly)

Jan 2020 Feb 2020 March 2020 April 2020 May 2020 June 2020
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Noisy Images
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Training Task

- Given a time series of satellite images, predict upcoming month
+ Train on single pixels

+ Three inputs and three outputs per pixel (RGB)
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Boundary Constraints
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Boundary Constraints

® Not noisy
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Constraints

Boundary Constraints
yR(t) < 0.9
yG(t) < 0.5
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Difference Constraints

yr(t) —yr(t —1)| < 0.05
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Boundary Constraints Difference Constraints
yr(t) < 0.5 yr(t) —yr(t —1)] < 0.05
ya(t) < 0.5 ya(t) — ya(t — 1) < 0.05

yB(t) < 0.35 yp(t) —yp(t —1)] <0.05

- g constraints at each time step in total
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Training Method
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Results (1/2)
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Results (2/2
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Prediction Examples (1/3)

ESN Target CESN
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Prediction Examples (2/3)
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Prediction Examples (3/3)

ESN Target
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Error
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Outline

4. Future Work & Conclusion
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Future Work: Recursive Predictions
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